Properties

Label 2-17850-1.1-c1-0-31
Degree $2$
Conductor $17850$
Sign $1$
Analytic cond. $142.532$
Root an. cond. $11.9387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 7-s + 8-s + 9-s − 5·11-s + 12-s + 6·13-s + 14-s + 16-s − 17-s + 18-s + 7·19-s + 21-s − 5·22-s + 6·23-s + 24-s + 6·26-s + 27-s + 28-s − 5·29-s + 7·31-s + 32-s − 5·33-s − 34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 1.50·11-s + 0.288·12-s + 1.66·13-s + 0.267·14-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 1.60·19-s + 0.218·21-s − 1.06·22-s + 1.25·23-s + 0.204·24-s + 1.17·26-s + 0.192·27-s + 0.188·28-s − 0.928·29-s + 1.25·31-s + 0.176·32-s − 0.870·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(142.532\)
Root analytic conductor: \(11.9387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.378902713\)
\(L(\frac12)\) \(\approx\) \(5.378902713\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 17 T + p T^{2} \) 1.83.ar
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.65504488450462, −15.27419376297788, −14.78811203332485, −13.99881637971742, −13.47665478937308, −13.28894974059245, −12.83556823354542, −11.76137045189631, −11.56348123599494, −10.80274758275378, −10.34293925177767, −9.725424244240287, −8.795891119475131, −8.467062044016955, −7.729523074245773, −7.297144002333892, −6.536834112492215, −5.798015351480800, −5.114656466723232, −4.786867451449186, −3.671325266180445, −3.299843002069945, −2.610068342310967, −1.717738684521647, −0.8841941520379270, 0.8841941520379270, 1.717738684521647, 2.610068342310967, 3.299843002069945, 3.671325266180445, 4.786867451449186, 5.114656466723232, 5.798015351480800, 6.536834112492215, 7.297144002333892, 7.729523074245773, 8.467062044016955, 8.795891119475131, 9.725424244240287, 10.34293925177767, 10.80274758275378, 11.56348123599494, 11.76137045189631, 12.83556823354542, 13.28894974059245, 13.47665478937308, 13.99881637971742, 14.78811203332485, 15.27419376297788, 15.65504488450462

Graph of the $Z$-function along the critical line