Properties

Label 2-172800-1.1-c1-0-23
Degree $2$
Conductor $172800$
Sign $1$
Analytic cond. $1379.81$
Root an. cond. $37.1458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 11-s + 7·13-s + 3·17-s − 6·19-s + 9·23-s − 3·29-s + 5·31-s + 2·37-s + 2·41-s − 3·43-s + 7·47-s − 3·49-s − 4·53-s + 4·59-s − 14·61-s + 4·67-s − 10·71-s + 4·73-s − 2·77-s − 79-s − 10·83-s − 6·89-s + 14·91-s + 8·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.301·11-s + 1.94·13-s + 0.727·17-s − 1.37·19-s + 1.87·23-s − 0.557·29-s + 0.898·31-s + 0.328·37-s + 0.312·41-s − 0.457·43-s + 1.02·47-s − 3/7·49-s − 0.549·53-s + 0.520·59-s − 1.79·61-s + 0.488·67-s − 1.18·71-s + 0.468·73-s − 0.227·77-s − 0.112·79-s − 1.09·83-s − 0.635·89-s + 1.46·91-s + 0.812·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(172800\)    =    \(2^{8} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1379.81\)
Root analytic conductor: \(37.1458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 172800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.567640713\)
\(L(\frac12)\) \(\approx\) \(3.567640713\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29217299668157, −12.69632929529390, −12.43258556143064, −11.56842637563730, −11.28056058089229, −10.87023234400585, −10.53845766044288, −9.978569642926009, −9.200730789799777, −8.868025143039729, −8.401901161887626, −8.008734284706312, −7.499463756078081, −6.800637124669046, −6.406205667903890, −5.777088403794297, −5.455043216047587, −4.625240947006148, −4.379407935808851, −3.643713317849552, −3.114605688512731, −2.551283903539396, −1.641700730574965, −1.297845330022860, −0.5767264578631175, 0.5767264578631175, 1.297845330022860, 1.641700730574965, 2.551283903539396, 3.114605688512731, 3.643713317849552, 4.379407935808851, 4.625240947006148, 5.455043216047587, 5.777088403794297, 6.406205667903890, 6.800637124669046, 7.499463756078081, 8.008734284706312, 8.401901161887626, 8.868025143039729, 9.200730789799777, 9.978569642926009, 10.53845766044288, 10.87023234400585, 11.28056058089229, 11.56842637563730, 12.43258556143064, 12.69632929529390, 13.29217299668157

Graph of the $Z$-function along the critical line