Properties

Label 2-172800-1.1-c1-0-21
Degree $2$
Conductor $172800$
Sign $1$
Analytic cond. $1379.81$
Root an. cond. $37.1458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 5·11-s − 13-s + 3·17-s + 6·19-s + 7·23-s − 7·29-s − 5·31-s + 6·37-s + 8·41-s − 9·43-s + 47-s + 9·49-s + 6·53-s + 2·61-s + 12·67-s − 6·71-s − 2·73-s − 20·77-s − 11·79-s + 14·83-s + 6·89-s + 4·91-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.51·7-s + 1.50·11-s − 0.277·13-s + 0.727·17-s + 1.37·19-s + 1.45·23-s − 1.29·29-s − 0.898·31-s + 0.986·37-s + 1.24·41-s − 1.37·43-s + 0.145·47-s + 9/7·49-s + 0.824·53-s + 0.256·61-s + 1.46·67-s − 0.712·71-s − 0.234·73-s − 2.27·77-s − 1.23·79-s + 1.53·83-s + 0.635·89-s + 0.419·91-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(172800\)    =    \(2^{8} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1379.81\)
Root analytic conductor: \(37.1458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 172800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.764152266\)
\(L(\frac12)\) \(\approx\) \(2.764152266\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11574317158421, −12.78374213898723, −12.33802288205823, −11.71104864368415, −11.44539341249945, −10.93883525175591, −10.13971027942503, −9.813384935858361, −9.314396872510843, −9.164531500847347, −8.604913955726185, −7.692313268660068, −7.287511000223592, −6.986455001271752, −6.350921505530867, −5.935291457263937, −5.402965060613746, −4.857517783562722, −4.006892972755632, −3.594169106937117, −3.232224878480634, −2.647850071424156, −1.794600382405104, −1.039586872488653, −0.5655069438280605, 0.5655069438280605, 1.039586872488653, 1.794600382405104, 2.647850071424156, 3.232224878480634, 3.594169106937117, 4.006892972755632, 4.857517783562722, 5.402965060613746, 5.935291457263937, 6.350921505530867, 6.986455001271752, 7.287511000223592, 7.692313268660068, 8.604913955726185, 9.164531500847347, 9.314396872510843, 9.813384935858361, 10.13971027942503, 10.93883525175591, 11.44539341249945, 11.71104864368415, 12.33802288205823, 12.78374213898723, 13.11574317158421

Graph of the $Z$-function along the critical line