Properties

Label 2-167310-1.1-c1-0-134
Degree $2$
Conductor $167310$
Sign $-1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 5·7-s + 8-s − 10-s − 11-s + 5·14-s + 16-s − 6·17-s + 2·19-s − 20-s − 22-s − 3·23-s + 25-s + 5·28-s + 3·29-s + 5·31-s + 32-s − 6·34-s − 5·35-s + 2·37-s + 2·38-s − 40-s − 3·41-s − 43-s − 44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.88·7-s + 0.353·8-s − 0.316·10-s − 0.301·11-s + 1.33·14-s + 1/4·16-s − 1.45·17-s + 0.458·19-s − 0.223·20-s − 0.213·22-s − 0.625·23-s + 1/5·25-s + 0.944·28-s + 0.557·29-s + 0.898·31-s + 0.176·32-s − 1.02·34-s − 0.845·35-s + 0.328·37-s + 0.324·38-s − 0.158·40-s − 0.468·41-s − 0.152·43-s − 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - 5 T + p T^{2} \) 1.7.af
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56127744826883, −13.13631431256339, −12.32655564357687, −12.11089373619842, −11.47982874355415, −11.30426813112607, −10.82785212353626, −10.32761207966642, −9.811273517088007, −8.892017725499240, −8.647108883814629, −8.039317878745261, −7.728503776723715, −7.224210937587114, −6.595253220394556, −6.108344823760156, −5.409691196495726, −4.918112222672766, −4.592824859095475, −4.140646924294471, −3.573293806818364, −2.618531190423615, −2.369038921604365, −1.579386168925663, −1.059063650791291, 0, 1.059063650791291, 1.579386168925663, 2.369038921604365, 2.618531190423615, 3.573293806818364, 4.140646924294471, 4.592824859095475, 4.918112222672766, 5.409691196495726, 6.108344823760156, 6.595253220394556, 7.224210937587114, 7.728503776723715, 8.039317878745261, 8.647108883814629, 8.892017725499240, 9.811273517088007, 10.32761207966642, 10.82785212353626, 11.30426813112607, 11.47982874355415, 12.11089373619842, 12.32655564357687, 13.13631431256339, 13.56127744826883

Graph of the $Z$-function along the critical line