Properties

Label 2-167310-1.1-c1-0-121
Degree $2$
Conductor $167310$
Sign $-1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 4·7-s + 8-s − 10-s − 11-s + 4·14-s + 16-s − 2·19-s − 20-s − 22-s − 6·23-s + 25-s + 4·28-s − 6·29-s − 2·31-s + 32-s − 4·35-s + 4·37-s − 2·38-s − 40-s − 6·41-s + 8·43-s − 44-s − 6·46-s + 9·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.51·7-s + 0.353·8-s − 0.316·10-s − 0.301·11-s + 1.06·14-s + 1/4·16-s − 0.458·19-s − 0.223·20-s − 0.213·22-s − 1.25·23-s + 1/5·25-s + 0.755·28-s − 1.11·29-s − 0.359·31-s + 0.176·32-s − 0.676·35-s + 0.657·37-s − 0.324·38-s − 0.158·40-s − 0.937·41-s + 1.21·43-s − 0.150·44-s − 0.884·46-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52151362461457, −13.05514405868259, −12.44015552999254, −11.97761486998753, −11.75232142731170, −11.10378152970906, −10.69046175246397, −10.55654016372163, −9.572684357865708, −9.228735358814341, −8.450114253064446, −8.013290683293634, −7.767742561068465, −7.243668862151436, −6.630167559194929, −5.904926278450204, −5.631404978646832, −4.914120378647121, −4.575229853168814, −4.042953381717302, −3.578086965534630, −2.831304866898571, −2.028708073638160, −1.845945418454854, −0.9463576664042222, 0, 0.9463576664042222, 1.845945418454854, 2.028708073638160, 2.831304866898571, 3.578086965534630, 4.042953381717302, 4.575229853168814, 4.914120378647121, 5.631404978646832, 5.904926278450204, 6.630167559194929, 7.243668862151436, 7.767742561068465, 8.013290683293634, 8.450114253064446, 9.228735358814341, 9.572684357865708, 10.55654016372163, 10.69046175246397, 11.10378152970906, 11.75232142731170, 11.97761486998753, 12.44015552999254, 13.05514405868259, 13.52151362461457

Graph of the $Z$-function along the critical line