Properties

Label 2-162288-1.1-c1-0-137
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·17-s + 4·19-s + 23-s − 25-s + 10·29-s − 6·31-s + 2·37-s + 4·43-s − 6·47-s + 2·53-s − 2·59-s + 2·61-s − 8·71-s − 4·73-s − 4·79-s − 4·85-s + 6·89-s + 8·95-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 2·115-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.485·17-s + 0.917·19-s + 0.208·23-s − 1/5·25-s + 1.85·29-s − 1.07·31-s + 0.328·37-s + 0.609·43-s − 0.875·47-s + 0.274·53-s − 0.260·59-s + 0.256·61-s − 0.949·71-s − 0.468·73-s − 0.450·79-s − 0.433·85-s + 0.635·89-s + 0.820·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 0.186·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56548886504642, −13.04449379475847, −12.70531091172551, −11.89712662759942, −11.80191738828001, −11.03952129066465, −10.63313421775625, −10.11442783987946, −9.682145734772813, −9.274861709197447, −8.744100679746447, −8.291362671874077, −7.613697677351211, −7.199183948581780, −6.591984461179433, −6.126459709375323, −5.679507555741655, −5.086297354742182, −4.655577647738545, −3.994548681941397, −3.319856211283103, −2.738722779208451, −2.229926950136191, −1.510429233141412, −0.9747583174937000, 0, 0.9747583174937000, 1.510429233141412, 2.229926950136191, 2.738722779208451, 3.319856211283103, 3.994548681941397, 4.655577647738545, 5.086297354742182, 5.679507555741655, 6.126459709375323, 6.591984461179433, 7.199183948581780, 7.613697677351211, 8.291362671874077, 8.744100679746447, 9.274861709197447, 9.682145734772813, 10.11442783987946, 10.63313421775625, 11.03952129066465, 11.80191738828001, 11.89712662759942, 12.70531091172551, 13.04449379475847, 13.56548886504642

Graph of the $Z$-function along the critical line