Properties

Label 2-162288-1.1-c1-0-127
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·13-s − 4·17-s − 2·19-s − 23-s − 25-s + 6·29-s + 2·31-s − 6·37-s − 2·41-s − 4·43-s − 6·47-s − 6·53-s + 2·61-s + 8·65-s + 4·67-s + 12·71-s + 10·73-s + 8·79-s + 6·83-s − 8·85-s − 4·95-s − 8·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.10·13-s − 0.970·17-s − 0.458·19-s − 0.208·23-s − 1/5·25-s + 1.11·29-s + 0.359·31-s − 0.986·37-s − 0.312·41-s − 0.609·43-s − 0.875·47-s − 0.824·53-s + 0.256·61-s + 0.992·65-s + 0.488·67-s + 1.42·71-s + 1.17·73-s + 0.900·79-s + 0.658·83-s − 0.867·85-s − 0.410·95-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59054760764318, −13.19913966321204, −12.55600180179185, −12.16282624778114, −11.55996229555840, −11.01038286895606, −10.69707897867049, −10.19693915150091, −9.580776273848482, −9.350082290728400, −8.562832299550974, −8.338802750532948, −7.884361303822796, −6.901802005116620, −6.577350961389172, −6.300398444500792, −5.659897613229641, −5.074881386277726, −4.650516135498243, −3.891170871403522, −3.477813226000600, −2.714547817621047, −2.097147079430071, −1.653712780998674, −0.9189288831674399, 0, 0.9189288831674399, 1.653712780998674, 2.097147079430071, 2.714547817621047, 3.477813226000600, 3.891170871403522, 4.650516135498243, 5.074881386277726, 5.659897613229641, 6.300398444500792, 6.577350961389172, 6.901802005116620, 7.884361303822796, 8.338802750532948, 8.562832299550974, 9.350082290728400, 9.580776273848482, 10.19693915150091, 10.69707897867049, 11.01038286895606, 11.55996229555840, 12.16282624778114, 12.55600180179185, 13.19913966321204, 13.59054760764318

Graph of the $Z$-function along the critical line