Properties

Label 2-162288-1.1-c1-0-109
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·11-s + 5·13-s + 2·17-s − 2·19-s − 23-s − 4·25-s + 5·29-s − 7·37-s + 3·41-s + 11·43-s − 9·47-s − 10·53-s + 2·55-s + 12·59-s + 2·61-s − 5·65-s + 4·67-s − 6·71-s − 6·73-s + 12·79-s − 4·83-s − 2·85-s + 2·95-s + 3·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.603·11-s + 1.38·13-s + 0.485·17-s − 0.458·19-s − 0.208·23-s − 4/5·25-s + 0.928·29-s − 1.15·37-s + 0.468·41-s + 1.67·43-s − 1.31·47-s − 1.37·53-s + 0.269·55-s + 1.56·59-s + 0.256·61-s − 0.620·65-s + 0.488·67-s − 0.712·71-s − 0.702·73-s + 1.35·79-s − 0.439·83-s − 0.216·85-s + 0.205·95-s + 0.304·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27205933413351, −13.22921246993835, −12.49097752409700, −12.10914998756429, −11.62195112506179, −10.96742443248423, −10.84871222786238, −10.17607881609190, −9.764936648245534, −9.136990410781783, −8.559518133717891, −8.223534312755227, −7.788324579942001, −7.275239724721950, −6.535969238630424, −6.247758774355259, −5.578776105640075, −5.181780175650521, −4.402076423303991, −3.983354587343949, −3.442662685729695, −2.899318332339019, −2.180605050840768, −1.499518069682134, −0.8120441102891865, 0, 0.8120441102891865, 1.499518069682134, 2.180605050840768, 2.899318332339019, 3.442662685729695, 3.983354587343949, 4.402076423303991, 5.181780175650521, 5.578776105640075, 6.247758774355259, 6.535969238630424, 7.275239724721950, 7.788324579942001, 8.223534312755227, 8.559518133717891, 9.136990410781783, 9.764936648245534, 10.17607881609190, 10.84871222786238, 10.96742443248423, 11.62195112506179, 12.10914998756429, 12.49097752409700, 13.22921246993835, 13.27205933413351

Graph of the $Z$-function along the critical line