Properties

Label 2-162288-1.1-c1-0-102
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·11-s + 2·13-s − 6·17-s + 4·19-s + 23-s − 25-s − 2·29-s + 2·31-s − 10·43-s + 2·47-s + 4·53-s − 4·55-s + 8·59-s − 2·61-s − 4·65-s + 2·67-s + 8·71-s + 4·73-s − 4·79-s − 12·83-s + 12·85-s + 2·89-s − 8·95-s − 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.603·11-s + 0.554·13-s − 1.45·17-s + 0.917·19-s + 0.208·23-s − 1/5·25-s − 0.371·29-s + 0.359·31-s − 1.52·43-s + 0.291·47-s + 0.549·53-s − 0.539·55-s + 1.04·59-s − 0.256·61-s − 0.496·65-s + 0.244·67-s + 0.949·71-s + 0.468·73-s − 0.450·79-s − 1.31·83-s + 1.30·85-s + 0.211·89-s − 0.820·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52903039331295, −13.08945190389823, −12.49343476337753, −11.95853345339838, −11.59109281521065, −11.17428433413528, −10.90993947235977, −10.05446728027017, −9.751559688964717, −9.071278518985599, −8.668389649349086, −8.266850359114889, −7.702817745656575, −7.153365237654599, −6.696051742007736, −6.324130447760991, −5.515802426708835, −5.123284515151496, −4.310999592411815, −4.062116298584382, −3.485663715413570, −2.919855155793686, −2.162810290584971, −1.503549305878138, −0.7629771544201513, 0, 0.7629771544201513, 1.503549305878138, 2.162810290584971, 2.919855155793686, 3.485663715413570, 4.062116298584382, 4.310999592411815, 5.123284515151496, 5.515802426708835, 6.324130447760991, 6.696051742007736, 7.153365237654599, 7.702817745656575, 8.266850359114889, 8.668389649349086, 9.071278518985599, 9.751559688964717, 10.05446728027017, 10.90993947235977, 11.17428433413528, 11.59109281521065, 11.95853345339838, 12.49343476337753, 13.08945190389823, 13.52903039331295

Graph of the $Z$-function along the critical line