Properties

Label 2-1617-1.1-c1-0-12
Degree $2$
Conductor $1617$
Sign $1$
Analytic cond. $12.9118$
Root an. cond. $3.59330$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 6-s − 3·8-s + 9-s − 11-s + 12-s + 4·13-s − 16-s − 4·17-s + 18-s + 8·19-s − 22-s − 8·23-s + 3·24-s − 5·25-s + 4·26-s − 27-s + 2·29-s + 4·31-s + 5·32-s + 33-s − 4·34-s − 36-s + 10·37-s + 8·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.06·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s + 1.10·13-s − 1/4·16-s − 0.970·17-s + 0.235·18-s + 1.83·19-s − 0.213·22-s − 1.66·23-s + 0.612·24-s − 25-s + 0.784·26-s − 0.192·27-s + 0.371·29-s + 0.718·31-s + 0.883·32-s + 0.174·33-s − 0.685·34-s − 1/6·36-s + 1.64·37-s + 1.29·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1617 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1617 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1617\)    =    \(3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(12.9118\)
Root analytic conductor: \(3.59330\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1617,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.533844148\)
\(L(\frac12)\) \(\approx\) \(1.533844148\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.552454693622765888389394766714, −8.553909793382580544364980366756, −7.85134258597300221575314260926, −6.71914881298175970847803262695, −5.83570011756075485976483067875, −5.44248510829291586729906519635, −4.27742942271747976447206821512, −3.79403693919376686631240969854, −2.49490428968644150893949998293, −0.811628513945363488373168988408, 0.811628513945363488373168988408, 2.49490428968644150893949998293, 3.79403693919376686631240969854, 4.27742942271747976447206821512, 5.44248510829291586729906519635, 5.83570011756075485976483067875, 6.71914881298175970847803262695, 7.85134258597300221575314260926, 8.553909793382580544364980366756, 9.552454693622765888389394766714

Graph of the $Z$-function along the critical line