Properties

Label 2-15730-1.1-c1-0-10
Degree $2$
Conductor $15730$
Sign $1$
Analytic cond. $125.604$
Root an. cond. $11.2073$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s + 5-s − 2·6-s + 4·7-s + 8-s + 9-s + 10-s − 2·12-s − 13-s + 4·14-s − 2·15-s + 16-s + 6·17-s + 18-s − 2·19-s + 20-s − 8·21-s + 6·23-s − 2·24-s + 25-s − 26-s + 4·27-s + 4·28-s + 6·29-s − 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s + 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.577·12-s − 0.277·13-s + 1.06·14-s − 0.516·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 0.458·19-s + 0.223·20-s − 1.74·21-s + 1.25·23-s − 0.408·24-s + 1/5·25-s − 0.196·26-s + 0.769·27-s + 0.755·28-s + 1.11·29-s − 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15730\)    =    \(2 \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(125.604\)
Root analytic conductor: \(11.2073\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 15730,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.618203060\)
\(L(\frac12)\) \(\approx\) \(3.618203060\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.20003189714115, −15.23092136347794, −14.75042657419212, −14.42429354988992, −13.85403652022262, −13.15423587858689, −12.50087830900113, −12.03151180040867, −11.55557893410011, −11.07110499087718, −10.55242021684803, −10.05233423180403, −9.205579517387938, −8.268439646493397, −7.957238021447144, −7.019384646528709, −6.558272346303689, −5.703370121483604, −5.383561253733787, −4.794743156872237, −4.370519429162164, −3.221355782380673, −2.483180293523739, −1.463674587309159, −0.8708900478600117, 0.8708900478600117, 1.463674587309159, 2.483180293523739, 3.221355782380673, 4.370519429162164, 4.794743156872237, 5.383561253733787, 5.703370121483604, 6.558272346303689, 7.019384646528709, 7.957238021447144, 8.268439646493397, 9.205579517387938, 10.05233423180403, 10.55242021684803, 11.07110499087718, 11.55557893410011, 12.03151180040867, 12.50087830900113, 13.15423587858689, 13.85403652022262, 14.42429354988992, 14.75042657419212, 15.23092136347794, 16.20003189714115

Graph of the $Z$-function along the critical line