Properties

Label 2-155232-1.1-c1-0-105
Degree $2$
Conductor $155232$
Sign $-1$
Analytic cond. $1239.53$
Root an. cond. $35.2070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 11-s − 4·13-s − 6·17-s − 2·19-s + 11·25-s − 10·29-s + 8·31-s − 6·37-s + 2·41-s + 12·43-s − 8·47-s − 6·53-s + 4·55-s + 14·59-s − 16·65-s − 8·67-s + 8·71-s + 10·73-s − 8·79-s + 10·83-s − 24·85-s + 2·89-s − 8·95-s − 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.301·11-s − 1.10·13-s − 1.45·17-s − 0.458·19-s + 11/5·25-s − 1.85·29-s + 1.43·31-s − 0.986·37-s + 0.312·41-s + 1.82·43-s − 1.16·47-s − 0.824·53-s + 0.539·55-s + 1.82·59-s − 1.98·65-s − 0.977·67-s + 0.949·71-s + 1.17·73-s − 0.900·79-s + 1.09·83-s − 2.60·85-s + 0.211·89-s − 0.820·95-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 155232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 155232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(155232\)    =    \(2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(1239.53\)
Root analytic conductor: \(35.2070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 155232,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51278857644239, −13.12196437891840, −12.68991855973003, −12.32630043140757, −11.53129265028854, −11.11092358988168, −10.66211268111879, −10.00964948452955, −9.806639372912730, −9.203338145328033, −8.962552043250537, −8.374338047567314, −7.640351596564464, −7.055650058385636, −6.632442827431391, −6.167022877667642, −5.720197595227592, −5.082353193132937, −4.722925980872749, −4.097724978181680, −3.327227022477138, −2.497519910974146, −2.220263596282261, −1.783790495965460, −0.9232420084419944, 0, 0.9232420084419944, 1.783790495965460, 2.220263596282261, 2.497519910974146, 3.327227022477138, 4.097724978181680, 4.722925980872749, 5.082353193132937, 5.720197595227592, 6.167022877667642, 6.632442827431391, 7.055650058385636, 7.640351596564464, 8.374338047567314, 8.962552043250537, 9.203338145328033, 9.806639372912730, 10.00964948452955, 10.66211268111879, 11.11092358988168, 11.53129265028854, 12.32630043140757, 12.68991855973003, 13.12196437891840, 13.51278857644239

Graph of the $Z$-function along the critical line