Properties

Label 2-14976-1.1-c1-0-33
Degree $2$
Conductor $14976$
Sign $-1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 4·11-s + 13-s − 17-s − 2·19-s − 2·23-s − 4·25-s + 35-s − 5·37-s + 6·41-s − 9·43-s − 5·47-s − 6·49-s + 6·53-s + 4·55-s − 4·59-s − 10·61-s + 65-s + 2·67-s − 15·71-s − 4·73-s + 4·77-s − 4·79-s − 85-s − 10·89-s + 91-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 1.20·11-s + 0.277·13-s − 0.242·17-s − 0.458·19-s − 0.417·23-s − 4/5·25-s + 0.169·35-s − 0.821·37-s + 0.937·41-s − 1.37·43-s − 0.729·47-s − 6/7·49-s + 0.824·53-s + 0.539·55-s − 0.520·59-s − 1.28·61-s + 0.124·65-s + 0.244·67-s − 1.78·71-s − 0.468·73-s + 0.455·77-s − 0.450·79-s − 0.108·85-s − 1.05·89-s + 0.104·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.41970705366729, −15.76012207708361, −15.18534495418682, −14.53003961546362, −14.24038223784875, −13.50424774852607, −13.16327616534365, −12.30150058765376, −11.82957401294524, −11.33636576110763, −10.68459168536867, −10.03367960618256, −9.502318422390590, −8.858550794571048, −8.390858600067210, −7.651116428913282, −6.932432827849323, −6.291074211350972, −5.868384126708223, −5.003240873733802, −4.298905609325182, −3.723689069332969, −2.851234605663175, −1.817697582139484, −1.409909879608182, 0, 1.409909879608182, 1.817697582139484, 2.851234605663175, 3.723689069332969, 4.298905609325182, 5.003240873733802, 5.868384126708223, 6.291074211350972, 6.932432827849323, 7.651116428913282, 8.390858600067210, 8.858550794571048, 9.502318422390590, 10.03367960618256, 10.68459168536867, 11.33636576110763, 11.82957401294524, 12.30150058765376, 13.16327616534365, 13.50424774852607, 14.24038223784875, 14.53003961546362, 15.18534495418682, 15.76012207708361, 16.41970705366729

Graph of the $Z$-function along the critical line