Properties

Label 2-14976-1.1-c1-0-13
Degree $2$
Conductor $14976$
Sign $1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 7-s − 4·11-s − 13-s + 7·17-s + 6·19-s − 6·23-s + 4·25-s + 8·31-s + 3·35-s + 9·37-s + 6·41-s + 5·43-s − 5·47-s − 6·49-s + 6·53-s − 12·55-s + 2·61-s − 3·65-s − 2·67-s + 9·71-s + 8·73-s − 4·77-s − 8·79-s − 4·83-s + 21·85-s − 14·89-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.377·7-s − 1.20·11-s − 0.277·13-s + 1.69·17-s + 1.37·19-s − 1.25·23-s + 4/5·25-s + 1.43·31-s + 0.507·35-s + 1.47·37-s + 0.937·41-s + 0.762·43-s − 0.729·47-s − 6/7·49-s + 0.824·53-s − 1.61·55-s + 0.256·61-s − 0.372·65-s − 0.244·67-s + 1.06·71-s + 0.936·73-s − 0.455·77-s − 0.900·79-s − 0.439·83-s + 2.27·85-s − 1.48·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.268063519\)
\(L(\frac12)\) \(\approx\) \(3.268063519\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.21079786536661, −15.56760553029915, −14.77075335135320, −14.32076304902533, −13.71771800661237, −13.55963693071292, −12.59883435998315, −12.32791580718009, −11.51095259733770, −10.94494559991593, −10.08315792897085, −9.767200669723551, −9.629781779034453, −8.434327340232022, −7.883938916352921, −7.548818237791853, −6.572931502991851, −5.736379801905322, −5.585850511182600, −4.907347360884272, −4.040334757449199, −2.914598466332713, −2.584315979260942, −1.605065120568284, −0.8259695144944730, 0.8259695144944730, 1.605065120568284, 2.584315979260942, 2.914598466332713, 4.040334757449199, 4.907347360884272, 5.585850511182600, 5.736379801905322, 6.572931502991851, 7.548818237791853, 7.883938916352921, 8.434327340232022, 9.629781779034453, 9.767200669723551, 10.08315792897085, 10.94494559991593, 11.51095259733770, 12.32791580718009, 12.59883435998315, 13.55963693071292, 13.71771800661237, 14.32076304902533, 14.77075335135320, 15.56760553029915, 16.21079786536661

Graph of the $Z$-function along the critical line