Properties

Label 2-149454-1.1-c1-0-30
Degree $2$
Conductor $149454$
Sign $1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 2·7-s + 8-s + 2·10-s − 2·11-s − 2·13-s + 2·14-s + 16-s + 2·20-s − 2·22-s − 23-s − 25-s − 2·26-s + 2·28-s + 2·29-s + 4·31-s + 32-s + 4·35-s + 4·37-s + 2·40-s + 6·41-s − 8·43-s − 2·44-s − 46-s − 8·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.755·7-s + 0.353·8-s + 0.632·10-s − 0.603·11-s − 0.554·13-s + 0.534·14-s + 1/4·16-s + 0.447·20-s − 0.426·22-s − 0.208·23-s − 1/5·25-s − 0.392·26-s + 0.377·28-s + 0.371·29-s + 0.718·31-s + 0.176·32-s + 0.676·35-s + 0.657·37-s + 0.316·40-s + 0.937·41-s − 1.21·43-s − 0.301·44-s − 0.147·46-s − 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.553631858\)
\(L(\frac12)\) \(\approx\) \(5.553631858\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.36328840514347, −13.02698262380314, −12.46957973279774, −11.92081750267819, −11.47244472853625, −11.12653221204369, −10.39629069989217, −10.03050532277181, −9.733539265893823, −9.012988832443363, −8.365173271358722, −7.966422679023770, −7.510392613066003, −6.805538555093374, −6.390365525027245, −5.844332813685793, −5.190750564508930, −5.066276451191606, −4.376768184882314, −3.824556397023232, −3.041916451970728, −2.458322310248853, −2.073075968185757, −1.418060747393400, −0.5930806359679145, 0.5930806359679145, 1.418060747393400, 2.073075968185757, 2.458322310248853, 3.041916451970728, 3.824556397023232, 4.376768184882314, 5.066276451191606, 5.190750564508930, 5.844332813685793, 6.390365525027245, 6.805538555093374, 7.510392613066003, 7.966422679023770, 8.365173271358722, 9.012988832443363, 9.733539265893823, 10.03050532277181, 10.39629069989217, 11.12653221204369, 11.47244472853625, 11.92081750267819, 12.46957973279774, 13.02698262380314, 13.36328840514347

Graph of the $Z$-function along the critical line