Properties

Label 2-149454-1.1-c1-0-20
Degree $2$
Conductor $149454$
Sign $1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s + 5·13-s − 14-s + 16-s + 6·17-s − 23-s − 5·25-s + 5·26-s − 28-s − 6·29-s − 7·31-s + 32-s + 6·34-s + 5·37-s − 6·41-s − 7·43-s − 46-s + 12·47-s − 6·49-s − 5·50-s + 5·52-s − 6·53-s − 56-s − 6·58-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s + 1.38·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s − 0.208·23-s − 25-s + 0.980·26-s − 0.188·28-s − 1.11·29-s − 1.25·31-s + 0.176·32-s + 1.02·34-s + 0.821·37-s − 0.937·41-s − 1.06·43-s − 0.147·46-s + 1.75·47-s − 6/7·49-s − 0.707·50-s + 0.693·52-s − 0.824·53-s − 0.133·56-s − 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.780735063\)
\(L(\frac12)\) \(\approx\) \(3.780735063\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39296917532810, −12.99116487622761, −12.41059706147726, −11.99885302039932, −11.44231477689494, −11.14057397994656, −10.47323886893549, −10.12978459406802, −9.486387478688839, −9.092316253099841, −8.440124615428649, −7.786188401646696, −7.598582742415009, −6.881666537897158, −6.220834585452367, −5.964427204647695, −5.414258500887472, −4.986245296400979, −4.036409130869881, −3.729423625815976, −3.362735163254754, −2.685593973464043, −1.790033050586273, −1.450239200082433, −0.4964937562303246, 0.4964937562303246, 1.450239200082433, 1.790033050586273, 2.685593973464043, 3.362735163254754, 3.729423625815976, 4.036409130869881, 4.986245296400979, 5.414258500887472, 5.964427204647695, 6.220834585452367, 6.881666537897158, 7.598582742415009, 7.786188401646696, 8.440124615428649, 9.092316253099841, 9.486387478688839, 10.12978459406802, 10.47323886893549, 11.14057397994656, 11.44231477689494, 11.99885302039932, 12.41059706147726, 12.99116487622761, 13.39296917532810

Graph of the $Z$-function along the critical line