Properties

Label 2-148720-1.1-c1-0-18
Degree $2$
Conductor $148720$
Sign $1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s − 11-s + 2·17-s + 4·19-s − 8·23-s + 25-s + 10·29-s + 8·31-s − 6·37-s + 2·41-s + 12·43-s + 3·45-s − 4·47-s − 7·49-s − 6·53-s + 55-s − 4·59-s + 10·61-s + 4·67-s + 14·73-s + 8·79-s + 9·81-s + 12·83-s − 2·85-s + 14·89-s − 4·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s − 0.301·11-s + 0.485·17-s + 0.917·19-s − 1.66·23-s + 1/5·25-s + 1.85·29-s + 1.43·31-s − 0.986·37-s + 0.312·41-s + 1.82·43-s + 0.447·45-s − 0.583·47-s − 49-s − 0.824·53-s + 0.134·55-s − 0.520·59-s + 1.28·61-s + 0.488·67-s + 1.63·73-s + 0.900·79-s + 81-s + 1.31·83-s − 0.216·85-s + 1.48·89-s − 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.136081647\)
\(L(\frac12)\) \(\approx\) \(2.136081647\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51982256688355, −12.73769113061811, −12.22863531865227, −11.93968788907684, −11.63300357186968, −10.88417530285558, −10.59558771008572, −9.932063209003698, −9.588249523708655, −8.991031942451566, −8.276673281145489, −8.013692764201187, −7.802505252629315, −6.883156301266847, −6.443347513833575, −5.947260651676360, −5.401807910875067, −4.816295128243780, −4.401174020034176, −3.500860464782574, −3.271074585490467, −2.537628705308352, −2.041113806704021, −0.9734268219110378, −0.5195003724517325, 0.5195003724517325, 0.9734268219110378, 2.041113806704021, 2.537628705308352, 3.271074585490467, 3.500860464782574, 4.401174020034176, 4.816295128243780, 5.401807910875067, 5.947260651676360, 6.443347513833575, 6.883156301266847, 7.802505252629315, 8.013692764201187, 8.276673281145489, 8.991031942451566, 9.588249523708655, 9.932063209003698, 10.59558771008572, 10.88417530285558, 11.63300357186968, 11.93968788907684, 12.22863531865227, 12.73769113061811, 13.51982256688355

Graph of the $Z$-function along the critical line