Properties

Label 2-148720-1.1-c1-0-15
Degree $2$
Conductor $148720$
Sign $-1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 3·9-s − 11-s − 7·17-s − 7·19-s − 4·23-s + 25-s + 6·29-s − 8·31-s + 2·35-s + 7·37-s + 3·41-s + 9·43-s + 3·45-s − 7·47-s − 3·49-s − 6·53-s + 55-s − 14·59-s + 2·61-s + 6·63-s + 5·67-s − 2·71-s + 8·73-s + 2·77-s − 4·79-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 9-s − 0.301·11-s − 1.69·17-s − 1.60·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s − 1.43·31-s + 0.338·35-s + 1.15·37-s + 0.468·41-s + 1.37·43-s + 0.447·45-s − 1.02·47-s − 3/7·49-s − 0.824·53-s + 0.134·55-s − 1.82·59-s + 0.256·61-s + 0.755·63-s + 0.610·67-s − 0.237·71-s + 0.936·73-s + 0.227·77-s − 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46219487727799, −13.06831810031967, −12.66200503798000, −12.27061376953114, −11.62795929524520, −11.07280908625813, −10.82494302913233, −10.45836881981566, −9.510625970775927, −9.313533100812875, −8.772089067605339, −8.151129522548128, −7.988480829973709, −7.185856179714725, −6.537542698550419, −6.269840836136953, −5.876723443402762, −5.016829883495142, −4.515205985943464, −4.035949732902144, −3.458647647328701, −2.684948462562433, −2.417890853507327, −1.679996023333398, −0.4737061976656310, 0, 0.4737061976656310, 1.679996023333398, 2.417890853507327, 2.684948462562433, 3.458647647328701, 4.035949732902144, 4.515205985943464, 5.016829883495142, 5.876723443402762, 6.269840836136953, 6.537542698550419, 7.185856179714725, 7.988480829973709, 8.151129522548128, 8.772089067605339, 9.313533100812875, 9.510625970775927, 10.45836881981566, 10.82494302913233, 11.07280908625813, 11.62795929524520, 12.27061376953114, 12.66200503798000, 13.06831810031967, 13.46219487727799

Graph of the $Z$-function along the critical line