Properties

Label 2-143650-1.1-c1-0-22
Degree $2$
Conductor $143650$
Sign $1$
Analytic cond. $1147.05$
Root an. cond. $33.8681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 5·7-s + 8-s − 2·9-s − 4·11-s + 12-s + 5·14-s + 16-s + 17-s − 2·18-s + 2·19-s + 5·21-s − 4·22-s − 8·23-s + 24-s − 5·27-s + 5·28-s + 5·31-s + 32-s − 4·33-s + 34-s − 2·36-s + 12·37-s + 2·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 1.88·7-s + 0.353·8-s − 2/3·9-s − 1.20·11-s + 0.288·12-s + 1.33·14-s + 1/4·16-s + 0.242·17-s − 0.471·18-s + 0.458·19-s + 1.09·21-s − 0.852·22-s − 1.66·23-s + 0.204·24-s − 0.962·27-s + 0.944·28-s + 0.898·31-s + 0.176·32-s − 0.696·33-s + 0.171·34-s − 1/3·36-s + 1.97·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1147.05\)
Root analytic conductor: \(33.8681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 143650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.218971573\)
\(L(\frac12)\) \(\approx\) \(6.218971573\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54739523607972, −13.07317541347042, −12.39882862659151, −11.88735541451945, −11.50529511415112, −11.18642662943920, −10.58999714340906, −10.15431242378187, −9.563049709809787, −8.877203883702904, −8.215033716131212, −8.084056572356247, −7.598739337344589, −7.301722472349035, −6.153594018639469, −5.828389898872477, −5.451696460194604, −4.639253358338357, −4.522785177666826, −3.818057059625753, −3.033452651528693, −2.508039459985574, −2.156136463094102, −1.437209534960206, −0.6104811852682943, 0.6104811852682943, 1.437209534960206, 2.156136463094102, 2.508039459985574, 3.033452651528693, 3.818057059625753, 4.522785177666826, 4.639253358338357, 5.451696460194604, 5.828389898872477, 6.153594018639469, 7.301722472349035, 7.598739337344589, 8.084056572356247, 8.215033716131212, 8.877203883702904, 9.563049709809787, 10.15431242378187, 10.58999714340906, 11.18642662943920, 11.50529511415112, 11.88735541451945, 12.39882862659151, 13.07317541347042, 13.54739523607972

Graph of the $Z$-function along the critical line