| L(s)  = 1 | + 2-s   + 3-s   + 4-s     + 6-s   + 5·7-s   + 8-s   − 2·9-s     − 4·11-s   + 12-s     + 5·14-s     + 16-s   + 17-s   − 2·18-s   + 2·19-s     + 5·21-s   − 4·22-s   − 8·23-s   + 24-s       − 5·27-s   + 5·28-s       + 5·31-s   + 32-s   − 4·33-s   + 34-s     − 2·36-s   + 12·37-s   + 2·38-s  + ⋯ | 
| L(s)  = 1 | + 0.707·2-s   + 0.577·3-s   + 1/2·4-s     + 0.408·6-s   + 1.88·7-s   + 0.353·8-s   − 2/3·9-s     − 1.20·11-s   + 0.288·12-s     + 1.33·14-s     + 1/4·16-s   + 0.242·17-s   − 0.471·18-s   + 0.458·19-s     + 1.09·21-s   − 0.852·22-s   − 1.66·23-s   + 0.204·24-s       − 0.962·27-s   + 0.944·28-s       + 0.898·31-s   + 0.176·32-s   − 0.696·33-s   + 0.171·34-s     − 1/3·36-s   + 1.97·37-s   + 0.324·38-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(6.218971573\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(6.218971573\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 - T \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 13 | \( 1 \) |  | 
|  | 17 | \( 1 - T \) |  | 
| good | 3 | \( 1 - T + p T^{2} \) | 1.3.ab | 
|  | 7 | \( 1 - 5 T + p T^{2} \) | 1.7.af | 
|  | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e | 
|  | 19 | \( 1 - 2 T + p T^{2} \) | 1.19.ac | 
|  | 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i | 
|  | 29 | \( 1 + p T^{2} \) | 1.29.a | 
|  | 31 | \( 1 - 5 T + p T^{2} \) | 1.31.af | 
|  | 37 | \( 1 - 12 T + p T^{2} \) | 1.37.am | 
|  | 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 - 2 T + p T^{2} \) | 1.47.ac | 
|  | 53 | \( 1 + T + p T^{2} \) | 1.53.b | 
|  | 59 | \( 1 + p T^{2} \) | 1.59.a | 
|  | 61 | \( 1 - 2 T + p T^{2} \) | 1.61.ac | 
|  | 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i | 
|  | 71 | \( 1 + 5 T + p T^{2} \) | 1.71.f | 
|  | 73 | \( 1 + 4 T + p T^{2} \) | 1.73.e | 
|  | 79 | \( 1 + 17 T + p T^{2} \) | 1.79.r | 
|  | 83 | \( 1 - 16 T + p T^{2} \) | 1.83.aq | 
|  | 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag | 
|  | 97 | \( 1 + 16 T + p T^{2} \) | 1.97.q | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.54739523607972, −13.07317541347042, −12.39882862659151, −11.88735541451945, −11.50529511415112, −11.18642662943920, −10.58999714340906, −10.15431242378187, −9.563049709809787, −8.877203883702904, −8.215033716131212, −8.084056572356247, −7.598739337344589, −7.301722472349035, −6.153594018639469, −5.828389898872477, −5.451696460194604, −4.639253358338357, −4.522785177666826, −3.818057059625753, −3.033452651528693, −2.508039459985574, −2.156136463094102, −1.437209534960206, −0.6104811852682943, 
0.6104811852682943, 1.437209534960206, 2.156136463094102, 2.508039459985574, 3.033452651528693, 3.818057059625753, 4.522785177666826, 4.639253358338357, 5.451696460194604, 5.828389898872477, 6.153594018639469, 7.301722472349035, 7.598739337344589, 8.084056572356247, 8.215033716131212, 8.877203883702904, 9.563049709809787, 10.15431242378187, 10.58999714340906, 11.18642662943920, 11.50529511415112, 11.88735541451945, 12.39882862659151, 13.07317541347042, 13.54739523607972
