Properties

Label 2-141570-1.1-c1-0-111
Degree $2$
Conductor $141570$
Sign $-1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 10-s + 13-s + 16-s + 6·17-s + 20-s + 4·23-s + 25-s − 26-s + 2·29-s − 32-s − 6·34-s + 6·37-s − 40-s − 10·41-s − 8·43-s − 4·46-s − 12·47-s − 7·49-s − 50-s + 52-s + 6·53-s − 2·58-s + 12·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s + 0.277·13-s + 1/4·16-s + 1.45·17-s + 0.223·20-s + 0.834·23-s + 1/5·25-s − 0.196·26-s + 0.371·29-s − 0.176·32-s − 1.02·34-s + 0.986·37-s − 0.158·40-s − 1.56·41-s − 1.21·43-s − 0.589·46-s − 1.75·47-s − 49-s − 0.141·50-s + 0.138·52-s + 0.824·53-s − 0.262·58-s + 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55708731620243, −13.01387261240090, −12.87545118755331, −11.98975324955165, −11.65753573661636, −11.33103352734270, −10.57717774043225, −10.14288479040236, −9.850430393068596, −9.416391818392647, −8.670247456265449, −8.391993749715427, −7.885889021566143, −7.320504419121962, −6.673250165186001, −6.451351964549392, −5.689340090532816, −5.203011737076498, −4.802908026016330, −3.834907328242171, −3.314201174832180, −2.848047508915217, −2.085819611556633, −1.397286500851507, −0.9718695006837012, 0, 0.9718695006837012, 1.397286500851507, 2.085819611556633, 2.848047508915217, 3.314201174832180, 3.834907328242171, 4.802908026016330, 5.203011737076498, 5.689340090532816, 6.451351964549392, 6.673250165186001, 7.320504419121962, 7.885889021566143, 8.391993749715427, 8.670247456265449, 9.416391818392647, 9.850430393068596, 10.14288479040236, 10.57717774043225, 11.33103352734270, 11.65753573661636, 11.98975324955165, 12.87545118755331, 13.01387261240090, 13.55708731620243

Graph of the $Z$-function along the critical line