Properties

Label 2-1320-1.1-c1-0-19
Degree $2$
Conductor $1320$
Sign $-1$
Analytic cond. $10.5402$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 4·7-s + 9-s + 11-s − 6·13-s + 15-s − 2·17-s − 4·19-s − 4·21-s − 8·23-s + 25-s + 27-s + 6·29-s + 33-s − 4·35-s − 2·37-s − 6·39-s + 2·41-s − 8·43-s + 45-s + 9·49-s − 2·51-s − 2·53-s + 55-s − 4·57-s + 4·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.301·11-s − 1.66·13-s + 0.258·15-s − 0.485·17-s − 0.917·19-s − 0.872·21-s − 1.66·23-s + 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.174·33-s − 0.676·35-s − 0.328·37-s − 0.960·39-s + 0.312·41-s − 1.21·43-s + 0.149·45-s + 9/7·49-s − 0.280·51-s − 0.274·53-s + 0.134·55-s − 0.529·57-s + 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1320\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(10.5402\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.333730813049933185735496650902, −8.567403487206224933564651554616, −7.56237980873441436401389019686, −6.65367439925152600648731332061, −6.17793908705338672919867029004, −4.88542583910507496729378372815, −3.92144876445360075975332781553, −2.85919212079310983846989540877, −2.07891804918662471445559880221, 0, 2.07891804918662471445559880221, 2.85919212079310983846989540877, 3.92144876445360075975332781553, 4.88542583910507496729378372815, 6.17793908705338672919867029004, 6.65367439925152600648731332061, 7.56237980873441436401389019686, 8.567403487206224933564651554616, 9.333730813049933185735496650902

Graph of the $Z$-function along the critical line