Properties

Label 2-130050-1.1-c1-0-129
Degree $2$
Conductor $130050$
Sign $-1$
Analytic cond. $1038.45$
Root an. cond. $32.2250$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·7-s + 8-s + 3·11-s − 2·13-s − 4·14-s + 16-s + 8·19-s + 3·22-s − 6·23-s − 2·26-s − 4·28-s + 3·29-s + 7·31-s + 32-s + 8·37-s + 8·38-s + 6·41-s + 4·43-s + 3·44-s − 6·46-s − 6·47-s + 9·49-s − 2·52-s − 9·53-s − 4·56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.51·7-s + 0.353·8-s + 0.904·11-s − 0.554·13-s − 1.06·14-s + 1/4·16-s + 1.83·19-s + 0.639·22-s − 1.25·23-s − 0.392·26-s − 0.755·28-s + 0.557·29-s + 1.25·31-s + 0.176·32-s + 1.31·37-s + 1.29·38-s + 0.937·41-s + 0.609·43-s + 0.452·44-s − 0.884·46-s − 0.875·47-s + 9/7·49-s − 0.277·52-s − 1.23·53-s − 0.534·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1038.45\)
Root analytic conductor: \(32.2250\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 130050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85133120250188, −13.27106570618997, −12.75126966856155, −12.20650790756938, −11.99271513715111, −11.59256239883185, −10.83202895461802, −10.35579940929892, −9.669287536990785, −9.481683710798014, −9.192791275975474, −8.113035192533286, −7.758882267777829, −7.249875464700132, −6.561278658250390, −6.201177542224371, −5.947281686254389, −5.168895771616438, −4.458231471217059, −4.171602256661868, −3.321388023509412, −3.032072566654652, −2.555621545939142, −1.566807378466640, −0.9329921487022741, 0, 0.9329921487022741, 1.566807378466640, 2.555621545939142, 3.032072566654652, 3.321388023509412, 4.171602256661868, 4.458231471217059, 5.168895771616438, 5.947281686254389, 6.201177542224371, 6.561278658250390, 7.249875464700132, 7.758882267777829, 8.113035192533286, 9.192791275975474, 9.481683710798014, 9.669287536990785, 10.35579940929892, 10.83202895461802, 11.59256239883185, 11.99271513715111, 12.20650790756938, 12.75126966856155, 13.27106570618997, 13.85133120250188

Graph of the $Z$-function along the critical line