Properties

Label 2-124950-1.1-c1-0-14
Degree $2$
Conductor $124950$
Sign $1$
Analytic cond. $997.730$
Root an. cond. $31.5868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 6·11-s + 12-s + 4·13-s + 16-s + 17-s − 18-s − 2·19-s + 6·22-s + 2·23-s − 24-s − 4·26-s + 27-s − 4·29-s − 32-s − 6·33-s − 34-s + 36-s + 2·37-s + 2·38-s + 4·39-s + 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 1.80·11-s + 0.288·12-s + 1.10·13-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.458·19-s + 1.27·22-s + 0.417·23-s − 0.204·24-s − 0.784·26-s + 0.192·27-s − 0.742·29-s − 0.176·32-s − 1.04·33-s − 0.171·34-s + 1/6·36-s + 0.328·37-s + 0.324·38-s + 0.640·39-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(997.730\)
Root analytic conductor: \(31.5868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 124950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.169408811\)
\(L(\frac12)\) \(\approx\) \(1.169408811\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33384939418019, −13.05729239869194, −12.76637401382054, −12.10633730710162, −11.24116685382429, −11.12091795087492, −10.60102296950528, −9.961842098413215, −9.797039716518364, −8.978885104659343, −8.567022120799936, −8.256339259738534, −7.591906279274872, −7.402327375896566, −6.673735159614730, −5.979885041688968, −5.649591994683203, −4.930580320270919, −4.319658627201593, −3.623916442379755, −2.943957737247043, −2.667955461704338, −1.830466295718717, −1.314788359991883, −0.3518535139110874, 0.3518535139110874, 1.314788359991883, 1.830466295718717, 2.667955461704338, 2.943957737247043, 3.623916442379755, 4.319658627201593, 4.930580320270919, 5.649591994683203, 5.979885041688968, 6.673735159614730, 7.402327375896566, 7.591906279274872, 8.256339259738534, 8.567022120799936, 8.978885104659343, 9.797039716518364, 9.961842098413215, 10.60102296950528, 11.12091795087492, 11.24116685382429, 12.10633730710162, 12.76637401382054, 13.05729239869194, 13.33384939418019

Graph of the $Z$-function along the critical line