Properties

Label 2-1218-1.1-c1-0-13
Degree $2$
Conductor $1218$
Sign $1$
Analytic cond. $9.72577$
Root an. cond. $3.11861$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 4·5-s − 6-s − 7-s + 8-s + 9-s + 4·10-s − 12-s + 2·13-s − 14-s − 4·15-s + 16-s + 2·17-s + 18-s + 4·20-s + 21-s − 2·23-s − 24-s + 11·25-s + 2·26-s − 27-s − 28-s − 29-s − 4·30-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.78·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.26·10-s − 0.288·12-s + 0.554·13-s − 0.267·14-s − 1.03·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.894·20-s + 0.218·21-s − 0.417·23-s − 0.204·24-s + 11/5·25-s + 0.392·26-s − 0.192·27-s − 0.188·28-s − 0.185·29-s − 0.730·30-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1218\)    =    \(2 \cdot 3 \cdot 7 \cdot 29\)
Sign: $1$
Analytic conductor: \(9.72577\)
Root analytic conductor: \(3.11861\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1218,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.918216407\)
\(L(\frac12)\) \(\approx\) \(2.918216407\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 + T \)
29 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.832359452926658863807637280539, −9.227113325636047270776722364526, −7.999930110461028592788411638480, −6.74954964488719477527454933713, −6.23655095662503498845373522731, −5.58652725497891668467484433545, −4.87114883253462968756112118545, −3.58224480636189118791782163461, −2.41793754232266905025946946351, −1.35941558913978044925336064577, 1.35941558913978044925336064577, 2.41793754232266905025946946351, 3.58224480636189118791782163461, 4.87114883253462968756112118545, 5.58652725497891668467484433545, 6.23655095662503498845373522731, 6.74954964488719477527454933713, 7.999930110461028592788411638480, 9.227113325636047270776722364526, 9.832359452926658863807637280539

Graph of the $Z$-function along the critical line