Properties

Label 2-12138-1.1-c1-0-21
Degree $2$
Conductor $12138$
Sign $-1$
Analytic cond. $96.9224$
Root an. cond. $9.84491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2·5-s + 6-s − 7-s − 8-s + 9-s − 2·10-s − 12-s + 4·13-s + 14-s − 2·15-s + 16-s − 18-s + 2·20-s + 21-s − 6·23-s + 24-s − 25-s − 4·26-s − 27-s − 28-s + 4·29-s + 2·30-s − 32-s − 2·35-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.632·10-s − 0.288·12-s + 1.10·13-s + 0.267·14-s − 0.516·15-s + 1/4·16-s − 0.235·18-s + 0.447·20-s + 0.218·21-s − 1.25·23-s + 0.204·24-s − 1/5·25-s − 0.784·26-s − 0.192·27-s − 0.188·28-s + 0.742·29-s + 0.365·30-s − 0.176·32-s − 0.338·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12138\)    =    \(2 \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(96.9224\)
Root analytic conductor: \(9.84491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 12138,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.59897399005509, −16.06247778514387, −15.95035397135932, −15.04013871593707, −14.39454524269330, −13.61894848461225, −13.36006802069396, −12.56252142347512, −11.98609907142957, −11.39916320860981, −10.73686041781557, −10.26238603182298, −9.708328285118823, −9.246423360541617, −8.427415062070016, −7.960475951391367, −7.046397841865952, −6.412034380830504, −5.983331791329172, −5.483483830821573, −4.459321027449694, −3.674091294608471, −2.755294859619879, −1.854898700624538, −1.171979980125002, 0, 1.171979980125002, 1.854898700624538, 2.755294859619879, 3.674091294608471, 4.459321027449694, 5.483483830821573, 5.983331791329172, 6.412034380830504, 7.046397841865952, 7.960475951391367, 8.427415062070016, 9.246423360541617, 9.708328285118823, 10.26238603182298, 10.73686041781557, 11.39916320860981, 11.98609907142957, 12.56252142347512, 13.36006802069396, 13.61894848461225, 14.39454524269330, 15.04013871593707, 15.95035397135932, 16.06247778514387, 16.59897399005509

Graph of the $Z$-function along the critical line