Properties

Label 2-116160-1.1-c1-0-140
Degree $2$
Conductor $116160$
Sign $-1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 4·7-s + 9-s + 2·13-s + 15-s − 6·17-s + 4·19-s − 4·21-s + 25-s + 27-s − 6·29-s − 8·31-s − 4·35-s − 2·37-s + 2·39-s + 6·41-s + 4·43-s + 45-s + 9·49-s − 6·51-s + 6·53-s + 4·57-s − 10·61-s − 4·63-s + 2·65-s − 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.554·13-s + 0.258·15-s − 1.45·17-s + 0.917·19-s − 0.872·21-s + 1/5·25-s + 0.192·27-s − 1.11·29-s − 1.43·31-s − 0.676·35-s − 0.328·37-s + 0.320·39-s + 0.937·41-s + 0.609·43-s + 0.149·45-s + 9/7·49-s − 0.840·51-s + 0.824·53-s + 0.529·57-s − 1.28·61-s − 0.503·63-s + 0.248·65-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.70437207815149, −13.28987815515262, −13.04988232108664, −12.60130573545532, −12.01589466025680, −11.33317805268743, −10.84320872021769, −10.42373606560807, −9.794152006041235, −9.312066369973248, −9.030665329626341, −8.747233949512238, −7.762048047779621, −7.379118467558885, −6.873266207529831, −6.329426810974199, −5.863140480262958, −5.389294800217086, −4.538965423897038, −3.962171622390928, −3.420512470683579, −3.005437167970143, −2.256500315137565, −1.796353526086149, −0.8231451536095404, 0, 0.8231451536095404, 1.796353526086149, 2.256500315137565, 3.005437167970143, 3.420512470683579, 3.962171622390928, 4.538965423897038, 5.389294800217086, 5.863140480262958, 6.329426810974199, 6.873266207529831, 7.379118467558885, 7.762048047779621, 8.747233949512238, 9.030665329626341, 9.312066369973248, 9.794152006041235, 10.42373606560807, 10.84320872021769, 11.33317805268743, 12.01589466025680, 12.60130573545532, 13.04988232108664, 13.28987815515262, 13.70437207815149

Graph of the $Z$-function along the critical line