Properties

Label 2-116160-1.1-c1-0-12
Degree $2$
Conductor $116160$
Sign $1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s − 6·13-s − 15-s + 6·19-s − 2·21-s − 8·23-s + 25-s + 27-s + 4·29-s + 4·31-s + 2·35-s + 6·37-s − 6·39-s − 8·41-s − 10·43-s − 45-s − 3·49-s + 6·53-s + 6·57-s − 4·59-s − 14·61-s − 2·63-s + 6·65-s − 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 1.66·13-s − 0.258·15-s + 1.37·19-s − 0.436·21-s − 1.66·23-s + 1/5·25-s + 0.192·27-s + 0.742·29-s + 0.718·31-s + 0.338·35-s + 0.986·37-s − 0.960·39-s − 1.24·41-s − 1.52·43-s − 0.149·45-s − 3/7·49-s + 0.824·53-s + 0.794·57-s − 0.520·59-s − 1.79·61-s − 0.251·63-s + 0.744·65-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9192692007\)
\(L(\frac12)\) \(\approx\) \(0.9192692007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71309058127970, −13.18197860485666, −12.52878084718771, −12.10140380067483, −11.87596740872973, −11.34632841550303, −10.43003081510149, −9.982322882849506, −9.816732233437238, −9.314529853946660, −8.641561144609341, −8.012616746131347, −7.768495527731914, −7.191763705979066, −6.670178592209112, −6.188648768042378, −5.428619146028511, −4.845663119353249, −4.413238492169977, −3.700367069431174, −3.113875463757592, −2.759370002587108, −2.051310961494372, −1.276242931012099, −0.2830294727594810, 0.2830294727594810, 1.276242931012099, 2.051310961494372, 2.759370002587108, 3.113875463757592, 3.700367069431174, 4.413238492169977, 4.845663119353249, 5.428619146028511, 6.188648768042378, 6.670178592209112, 7.191763705979066, 7.768495527731914, 8.012616746131347, 8.641561144609341, 9.314529853946660, 9.816732233437238, 9.982322882849506, 10.43003081510149, 11.34632841550303, 11.87596740872973, 12.10140380067483, 12.52878084718771, 13.18197860485666, 13.71309058127970

Graph of the $Z$-function along the critical line