Properties

Label 2-11616-1.1-c1-0-23
Degree $2$
Conductor $11616$
Sign $-1$
Analytic cond. $92.7542$
Root an. cond. $9.63089$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2·7-s + 9-s + 13-s + 15-s + 5·17-s + 8·19-s − 2·21-s − 6·23-s − 4·25-s − 27-s + 3·29-s − 4·31-s − 2·35-s − 11·37-s − 39-s − 3·41-s − 2·43-s − 45-s − 4·47-s − 3·49-s − 5·51-s + 3·53-s − 8·57-s − 6·59-s − 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.277·13-s + 0.258·15-s + 1.21·17-s + 1.83·19-s − 0.436·21-s − 1.25·23-s − 4/5·25-s − 0.192·27-s + 0.557·29-s − 0.718·31-s − 0.338·35-s − 1.80·37-s − 0.160·39-s − 0.468·41-s − 0.304·43-s − 0.149·45-s − 0.583·47-s − 3/7·49-s − 0.700·51-s + 0.412·53-s − 1.05·57-s − 0.781·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11616\)    =    \(2^{5} \cdot 3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(92.7542\)
Root analytic conductor: \(9.63089\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.52493960027732, −16.20418131975348, −15.69350045549844, −15.08002847428448, −14.37679947529626, −13.84893960782482, −13.48497330803452, −12.34267494329890, −12.05053884837373, −11.69704423854611, −11.02480680642124, −10.34453927037341, −9.854182347170728, −9.178740375805269, −8.266352468336179, −7.797907247772826, −7.358133910493936, −6.513885789687253, −5.672430043821636, −5.288484518492506, −4.580874278065912, −3.664952428964020, −3.210082905121656, −1.838840865423536, −1.222780200252140, 0, 1.222780200252140, 1.838840865423536, 3.210082905121656, 3.664952428964020, 4.580874278065912, 5.288484518492506, 5.672430043821636, 6.513885789687253, 7.358133910493936, 7.797907247772826, 8.266352468336179, 9.178740375805269, 9.854182347170728, 10.34453927037341, 11.02480680642124, 11.69704423854611, 12.05053884837373, 12.34267494329890, 13.48497330803452, 13.84893960782482, 14.37679947529626, 15.08002847428448, 15.69350045549844, 16.20418131975348, 16.52493960027732

Graph of the $Z$-function along the critical line