Properties

Label 2-116032-1.1-c1-0-37
Degree $2$
Conductor $116032$
Sign $-1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 3·9-s + 3·11-s − 5·13-s − 6·17-s + 4·19-s − 8·23-s + 4·25-s + 8·29-s + 7·31-s + 37-s − 2·41-s + 6·43-s − 9·45-s − 6·47-s − 53-s + 9·55-s − 9·59-s + 6·61-s − 15·65-s + 11·67-s − 15·71-s − 2·73-s − 4·79-s + 9·81-s + 14·83-s − 18·85-s + ⋯
L(s)  = 1  + 1.34·5-s − 9-s + 0.904·11-s − 1.38·13-s − 1.45·17-s + 0.917·19-s − 1.66·23-s + 4/5·25-s + 1.48·29-s + 1.25·31-s + 0.164·37-s − 0.312·41-s + 0.914·43-s − 1.34·45-s − 0.875·47-s − 0.137·53-s + 1.21·55-s − 1.17·59-s + 0.768·61-s − 1.86·65-s + 1.34·67-s − 1.78·71-s − 0.234·73-s − 0.450·79-s + 81-s + 1.53·83-s − 1.95·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.03415780425259, −13.42299452357764, −13.05729914415027, −12.16999287343207, −11.90525300362345, −11.67170124169493, −10.80216376181343, −10.39584894773157, −9.812094491774977, −9.454129743262771, −9.163761186705805, −8.334646576188103, −8.143333327970523, −7.277706086152804, −6.659363892096679, −6.324680040463346, −5.871005658067438, −5.303596277732780, −4.643616303807351, −4.337701873041477, −3.356279708964336, −2.700415364606021, −2.310190474354377, −1.764788344959233, −0.8895984284651878, 0, 0.8895984284651878, 1.764788344959233, 2.310190474354377, 2.700415364606021, 3.356279708964336, 4.337701873041477, 4.643616303807351, 5.303596277732780, 5.871005658067438, 6.324680040463346, 6.659363892096679, 7.277706086152804, 8.143333327970523, 8.334646576188103, 9.163761186705805, 9.454129743262771, 9.812094491774977, 10.39584894773157, 10.80216376181343, 11.67170124169493, 11.90525300362345, 12.16999287343207, 13.05729914415027, 13.42299452357764, 14.03415780425259

Graph of the $Z$-function along the critical line