Properties

Label 2-116032-1.1-c1-0-12
Degree $2$
Conductor $116032$
Sign $1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·5-s + 9-s − 11-s + 3·13-s − 6·15-s − 2·17-s − 4·19-s − 2·23-s + 4·25-s + 4·27-s − 2·29-s − 31-s + 2·33-s − 37-s − 6·39-s − 6·41-s − 2·43-s + 3·45-s + 12·47-s + 4·51-s − 9·53-s − 3·55-s + 8·57-s − 59-s − 2·61-s + 9·65-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.34·5-s + 1/3·9-s − 0.301·11-s + 0.832·13-s − 1.54·15-s − 0.485·17-s − 0.917·19-s − 0.417·23-s + 4/5·25-s + 0.769·27-s − 0.371·29-s − 0.179·31-s + 0.348·33-s − 0.164·37-s − 0.960·39-s − 0.937·41-s − 0.304·43-s + 0.447·45-s + 1.75·47-s + 0.560·51-s − 1.23·53-s − 0.404·55-s + 1.05·57-s − 0.130·59-s − 0.256·61-s + 1.11·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.330922538\)
\(L(\frac12)\) \(\approx\) \(1.330922538\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + T + p T^{2} \) 1.31.b
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54816874970945, −13.17307353285882, −12.53539819148340, −12.27702306143487, −11.54960908924331, −11.10431052351956, −10.65408207259703, −10.38138904338354, −9.821331355898317, −9.173447316730359, −8.835584499128408, −8.215040732554127, −7.614485103519225, −6.778557748954734, −6.368717149620618, −6.176403712774226, −5.439311637665226, −5.271837883126009, −4.543569328006299, −3.929276856902814, −3.187936762221647, −2.362062116698241, −1.922739020557470, −1.227656700217921, −0.3903816168592632, 0.3903816168592632, 1.227656700217921, 1.922739020557470, 2.362062116698241, 3.187936762221647, 3.929276856902814, 4.543569328006299, 5.271837883126009, 5.439311637665226, 6.176403712774226, 6.368717149620618, 6.778557748954734, 7.614485103519225, 8.215040732554127, 8.835584499128408, 9.173447316730359, 9.821331355898317, 10.38138904338354, 10.65408207259703, 11.10431052351956, 11.54960908924331, 12.27702306143487, 12.53539819148340, 13.17307353285882, 13.54816874970945

Graph of the $Z$-function along the critical line