Properties

Label 2-116032-1.1-c1-0-11
Degree $2$
Conductor $116032$
Sign $1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 9-s + 4·11-s − 6·13-s + 4·15-s + 4·17-s − 4·19-s − 25-s + 4·27-s + 10·29-s + 2·31-s − 8·33-s + 37-s + 12·39-s + 2·41-s − 4·43-s − 2·45-s − 8·51-s − 6·53-s − 8·55-s + 8·57-s − 14·61-s + 12·65-s + 12·67-s + 8·71-s + 14·73-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 1/3·9-s + 1.20·11-s − 1.66·13-s + 1.03·15-s + 0.970·17-s − 0.917·19-s − 1/5·25-s + 0.769·27-s + 1.85·29-s + 0.359·31-s − 1.39·33-s + 0.164·37-s + 1.92·39-s + 0.312·41-s − 0.609·43-s − 0.298·45-s − 1.12·51-s − 0.824·53-s − 1.07·55-s + 1.05·57-s − 1.79·61-s + 1.48·65-s + 1.46·67-s + 0.949·71-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8263531068\)
\(L(\frac12)\) \(\approx\) \(0.8263531068\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73862430193905, −12.71919084010601, −12.39822233887746, −12.09177332543766, −11.83941189852528, −11.20715508369652, −10.90244612047908, −10.13427401332143, −9.868903156999647, −9.316101237393453, −8.531446929722035, −8.160687907347342, −7.585205577938615, −7.036929526179191, −6.424964590374182, −6.297653390297802, −5.392743893340687, −4.979690690162410, −4.414567044729325, −4.061245314898044, −3.209419087914663, −2.695791777191551, −1.801097608716552, −0.9655348562538716, −0.3710194423488552, 0.3710194423488552, 0.9655348562538716, 1.801097608716552, 2.695791777191551, 3.209419087914663, 4.061245314898044, 4.414567044729325, 4.979690690162410, 5.392743893340687, 6.297653390297802, 6.424964590374182, 7.036929526179191, 7.585205577938615, 8.160687907347342, 8.531446929722035, 9.316101237393453, 9.868903156999647, 10.13427401332143, 10.90244612047908, 11.20715508369652, 11.83941189852528, 12.09177332543766, 12.39822233887746, 12.71919084010601, 13.73862430193905

Graph of the $Z$-function along the critical line