Properties

Label 2-11466-1.1-c1-0-40
Degree $2$
Conductor $11466$
Sign $-1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s + 8-s − 4·10-s − 4·11-s − 13-s + 16-s + 2·17-s + 4·19-s − 4·20-s − 4·22-s + 2·23-s + 11·25-s − 26-s + 6·29-s − 4·31-s + 32-s + 2·34-s + 4·37-s + 4·38-s − 4·40-s − 6·41-s − 4·43-s − 4·44-s + 2·46-s + 11·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.78·5-s + 0.353·8-s − 1.26·10-s − 1.20·11-s − 0.277·13-s + 1/4·16-s + 0.485·17-s + 0.917·19-s − 0.894·20-s − 0.852·22-s + 0.417·23-s + 11/5·25-s − 0.196·26-s + 1.11·29-s − 0.718·31-s + 0.176·32-s + 0.342·34-s + 0.657·37-s + 0.648·38-s − 0.632·40-s − 0.937·41-s − 0.609·43-s − 0.603·44-s + 0.294·46-s + 1.55·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.40674973708585, −16.08822499842077, −15.46383221760888, −15.14901997476643, −14.59578458937276, −13.86887160487428, −13.24738331883139, −12.66070483870140, −12.00015623030106, −11.84877816520693, −11.00776234633832, −10.62748276662139, −9.898246602262518, −9.000287182081379, −8.137710746828434, −7.840204579845715, −7.274463899385791, −6.681381009807273, −5.685612511697786, −4.919507781901723, −4.638499978693022, −3.596886811900995, −3.235385134093634, −2.469073579427738, −1.081315754322866, 0, 1.081315754322866, 2.469073579427738, 3.235385134093634, 3.596886811900995, 4.638499978693022, 4.919507781901723, 5.685612511697786, 6.681381009807273, 7.274463899385791, 7.840204579845715, 8.137710746828434, 9.000287182081379, 9.898246602262518, 10.62748276662139, 11.00776234633832, 11.84877816520693, 12.00015623030106, 12.66070483870140, 13.24738331883139, 13.86887160487428, 14.59578458937276, 15.14901997476643, 15.46383221760888, 16.08822499842077, 16.40674973708585

Graph of the $Z$-function along the critical line