Properties

Label 2-11466-1.1-c1-0-33
Degree $2$
Conductor $11466$
Sign $-1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4·5-s − 8-s + 4·10-s + 4·11-s + 13-s + 16-s + 2·17-s − 4·19-s − 4·20-s − 4·22-s − 2·23-s + 11·25-s − 26-s − 6·29-s + 4·31-s − 32-s − 2·34-s + 4·37-s + 4·38-s + 4·40-s − 6·41-s − 4·43-s + 4·44-s + 2·46-s − 11·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.353·8-s + 1.26·10-s + 1.20·11-s + 0.277·13-s + 1/4·16-s + 0.485·17-s − 0.917·19-s − 0.894·20-s − 0.852·22-s − 0.417·23-s + 11/5·25-s − 0.196·26-s − 1.11·29-s + 0.718·31-s − 0.176·32-s − 0.342·34-s + 0.657·37-s + 0.648·38-s + 0.632·40-s − 0.937·41-s − 0.609·43-s + 0.603·44-s + 0.294·46-s − 1.55·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.61743605566624, −16.38801658036295, −15.51039757195418, −15.15724082806057, −14.75782125784815, −14.03302874216044, −13.20881119757490, −12.33749737458158, −12.09631953058051, −11.48897793186564, −11.04250440573383, −10.45958448583101, −9.611912109809851, −9.013073470359040, −8.422548321396411, −7.894957881222260, −7.444544656840099, −6.592110048787052, −6.260323858526668, −5.067624991965440, −4.253334438472046, −3.722698486637180, −3.134378131883967, −1.920017963347043, −0.9541523983709955, 0, 0.9541523983709955, 1.920017963347043, 3.134378131883967, 3.722698486637180, 4.253334438472046, 5.067624991965440, 6.260323858526668, 6.592110048787052, 7.444544656840099, 7.894957881222260, 8.422548321396411, 9.013073470359040, 9.611912109809851, 10.45958448583101, 11.04250440573383, 11.48897793186564, 12.09631953058051, 12.33749737458158, 13.20881119757490, 14.03302874216044, 14.75782125784815, 15.15724082806057, 15.51039757195418, 16.38801658036295, 16.61743605566624

Graph of the $Z$-function along the critical line