Properties

Label 2-11466-1.1-c1-0-26
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·5-s − 8-s − 4·10-s + 4·11-s − 13-s + 16-s − 2·17-s + 4·19-s + 4·20-s − 4·22-s − 2·23-s + 11·25-s + 26-s − 6·29-s − 4·31-s − 32-s + 2·34-s + 4·37-s − 4·38-s − 4·40-s + 6·41-s − 4·43-s + 4·44-s + 2·46-s − 11·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.353·8-s − 1.26·10-s + 1.20·11-s − 0.277·13-s + 1/4·16-s − 0.485·17-s + 0.917·19-s + 0.894·20-s − 0.852·22-s − 0.417·23-s + 11/5·25-s + 0.196·26-s − 1.11·29-s − 0.718·31-s − 0.176·32-s + 0.342·34-s + 0.657·37-s − 0.648·38-s − 0.632·40-s + 0.937·41-s − 0.609·43-s + 0.603·44-s + 0.294·46-s − 1.55·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.511128048\)
\(L(\frac12)\) \(\approx\) \(2.511128048\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.59249352437820, −16.20343866133380, −15.23197222043570, −14.67523471130990, −14.15803884928300, −13.72661946075261, −12.96171510394202, −12.56501276066892, −11.59532290323907, −11.26049519567206, −10.44670345040291, −9.853521409006295, −9.394055999514484, −9.123916129300815, −8.365986728836603, −7.424175384039495, −6.881638826826102, −6.215331296653371, −5.735424692226267, −5.072238933736294, −4.058530445603365, −3.138501949592007, −2.195865294904756, −1.726958895111398, −0.8412634021820966, 0.8412634021820966, 1.726958895111398, 2.195865294904756, 3.138501949592007, 4.058530445603365, 5.072238933736294, 5.735424692226267, 6.215331296653371, 6.881638826826102, 7.424175384039495, 8.365986728836603, 9.123916129300815, 9.394055999514484, 9.853521409006295, 10.44670345040291, 11.26049519567206, 11.59532290323907, 12.56501276066892, 12.96171510394202, 13.72661946075261, 14.15803884928300, 14.67523471130990, 15.23197222043570, 16.20343866133380, 16.59249352437820

Graph of the $Z$-function along the critical line