Properties

Label 2-11466-1.1-c1-0-2
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·5-s + 8-s − 3·10-s − 6·11-s − 13-s + 16-s − 3·17-s − 2·19-s − 3·20-s − 6·22-s + 4·25-s − 26-s − 6·29-s + 4·31-s + 32-s − 3·34-s − 7·37-s − 2·38-s − 3·40-s − 43-s − 6·44-s + 3·47-s + 4·50-s − 52-s + 18·55-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.353·8-s − 0.948·10-s − 1.80·11-s − 0.277·13-s + 1/4·16-s − 0.727·17-s − 0.458·19-s − 0.670·20-s − 1.27·22-s + 4/5·25-s − 0.196·26-s − 1.11·29-s + 0.718·31-s + 0.176·32-s − 0.514·34-s − 1.15·37-s − 0.324·38-s − 0.474·40-s − 0.152·43-s − 0.904·44-s + 0.437·47-s + 0.565·50-s − 0.138·52-s + 2.42·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.012572441\)
\(L(\frac12)\) \(\approx\) \(1.012572441\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.15426388221805, −15.69568757854266, −15.32984193310870, −14.99579272241240, −14.14384385699382, −13.44310401436843, −13.09319309422100, −12.28494425734336, −12.12785726025217, −11.11618964892605, −10.93633242047812, −10.30575510035556, −9.462672275250506, −8.536902758946745, −8.038796962133949, −7.526513265431088, −6.977497322424188, −6.169530127661402, −5.286114768065388, −4.840240904771855, −4.123186683165709, −3.456867024218628, −2.704259344093753, −1.970244998707438, −0.3864530768850686, 0.3864530768850686, 1.970244998707438, 2.704259344093753, 3.456867024218628, 4.123186683165709, 4.840240904771855, 5.286114768065388, 6.169530127661402, 6.977497322424188, 7.526513265431088, 8.038796962133949, 8.536902758946745, 9.462672275250506, 10.30575510035556, 10.93633242047812, 11.11618964892605, 12.12785726025217, 12.28494425734336, 13.09319309422100, 13.44310401436843, 14.14384385699382, 14.99579272241240, 15.32984193310870, 15.69568757854266, 16.15426388221805

Graph of the $Z$-function along the critical line