Properties

Label 11466.bj
Number of curves $3$
Conductor $11466$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 11466.bj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11466.bj do not have complex multiplication.

Modular form 11466.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 3 q^{5} + q^{8} - 3 q^{10} - 6 q^{11} - q^{13} + q^{16} - 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 11466.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11466.bj1 11466cd3 \([1, -1, 1, -202649, -35062023]\) \(-10730978619193/6656\) \(-570859301376\) \([]\) \(68040\) \(1.5766\)  
11466.bj2 11466cd2 \([1, -1, 1, -1994, -67791]\) \(-10218313/17576\) \(-1507425342696\) \([]\) \(22680\) \(1.0273\)  
11466.bj3 11466cd1 \([1, -1, 1, 211, 1887]\) \(12167/26\) \(-2229919146\) \([]\) \(7560\) \(0.47804\) \(\Gamma_0(N)\)-optimal