Properties

Label 2-11200-1.1-c1-0-26
Degree $2$
Conductor $11200$
Sign $1$
Analytic cond. $89.4324$
Root an. cond. $9.45687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7-s + 6·9-s + 3·11-s + 13-s + 5·17-s − 8·19-s − 3·21-s + 2·23-s − 9·27-s + 29-s + 2·31-s − 9·33-s + 10·37-s − 3·39-s − 6·41-s + 4·43-s + 11·47-s + 49-s − 15·51-s + 6·53-s + 24·57-s − 10·59-s + 6·63-s + 10·67-s − 6·69-s + 10·73-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.377·7-s + 2·9-s + 0.904·11-s + 0.277·13-s + 1.21·17-s − 1.83·19-s − 0.654·21-s + 0.417·23-s − 1.73·27-s + 0.185·29-s + 0.359·31-s − 1.56·33-s + 1.64·37-s − 0.480·39-s − 0.937·41-s + 0.609·43-s + 1.60·47-s + 1/7·49-s − 2.10·51-s + 0.824·53-s + 3.17·57-s − 1.30·59-s + 0.755·63-s + 1.22·67-s − 0.722·69-s + 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11200\)    =    \(2^{6} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(89.4324\)
Root analytic conductor: \(9.45687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.339864652\)
\(L(\frac12)\) \(\approx\) \(1.339864652\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.80903580110281, −16.09775224148322, −15.36826584528663, −14.91388182175274, −14.24389506943828, −13.54242990842736, −12.71094352662284, −12.39619487714011, −11.84327900645674, −11.25917625865576, −10.80613519933634, −10.29259579412336, −9.632309705833685, −8.867780842272940, −8.126293851630532, −7.364756108702698, −6.662418983952134, −6.159322380803484, −5.691677809557447, −4.883740568347707, −4.314132028837888, −3.687201450844578, −2.362976212785033, −1.312895210405111, −0.6739201988734905, 0.6739201988734905, 1.312895210405111, 2.362976212785033, 3.687201450844578, 4.314132028837888, 4.883740568347707, 5.691677809557447, 6.159322380803484, 6.662418983952134, 7.364756108702698, 8.126293851630532, 8.867780842272940, 9.632309705833685, 10.29259579412336, 10.80613519933634, 11.25917625865576, 11.84327900645674, 12.39619487714011, 12.71094352662284, 13.54242990842736, 14.24389506943828, 14.91388182175274, 15.36826584528663, 16.09775224148322, 16.80903580110281

Graph of the $Z$-function along the critical line