Properties

Label 2-106470-1.1-c1-0-135
Degree $2$
Conductor $106470$
Sign $-1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s + 14-s + 16-s + 2·17-s − 20-s + 6·23-s + 25-s + 28-s − 6·29-s + 2·31-s + 32-s + 2·34-s − 35-s + 2·37-s − 40-s + 10·41-s − 12·43-s + 6·46-s − 4·47-s + 49-s + 50-s − 12·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s + 0.267·14-s + 1/4·16-s + 0.485·17-s − 0.223·20-s + 1.25·23-s + 1/5·25-s + 0.188·28-s − 1.11·29-s + 0.359·31-s + 0.176·32-s + 0.342·34-s − 0.169·35-s + 0.328·37-s − 0.158·40-s + 1.56·41-s − 1.82·43-s + 0.884·46-s − 0.583·47-s + 1/7·49-s + 0.141·50-s − 1.64·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08572393650125, −13.23980352982162, −12.99093937289402, −12.65695062139560, −11.88658741265851, −11.59299511860467, −11.01181703901586, −10.86972167807858, −9.915285047549310, −9.682320050318862, −8.930921114032481, −8.352918390722232, −7.934219308541970, −7.339663930455842, −6.939619144886551, −6.349073337121515, −5.699123116179744, −5.215779702216174, −4.722988536643146, −4.167699998049387, −3.563091082902004, −3.041936789854456, −2.452886547333875, −1.605237114684097, −1.046938035301256, 0, 1.046938035301256, 1.605237114684097, 2.452886547333875, 3.041936789854456, 3.563091082902004, 4.167699998049387, 4.722988536643146, 5.215779702216174, 5.699123116179744, 6.349073337121515, 6.939619144886551, 7.339663930455842, 7.934219308541970, 8.352918390722232, 8.930921114032481, 9.682320050318862, 9.915285047549310, 10.86972167807858, 11.01181703901586, 11.59299511860467, 11.88658741265851, 12.65695062139560, 12.99093937289402, 13.23980352982162, 14.08572393650125

Graph of the $Z$-function along the critical line