Properties

Label 2-106470-1.1-c1-0-119
Degree $2$
Conductor $106470$
Sign $-1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 5·11-s + 14-s + 16-s − 3·17-s + 7·19-s + 20-s − 5·22-s − 4·23-s + 25-s − 28-s − 5·29-s + 6·31-s − 32-s + 3·34-s − 35-s + 2·37-s − 7·38-s − 40-s + 3·41-s − 6·43-s + 5·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s − 0.353·8-s − 0.316·10-s + 1.50·11-s + 0.267·14-s + 1/4·16-s − 0.727·17-s + 1.60·19-s + 0.223·20-s − 1.06·22-s − 0.834·23-s + 1/5·25-s − 0.188·28-s − 0.928·29-s + 1.07·31-s − 0.176·32-s + 0.514·34-s − 0.169·35-s + 0.328·37-s − 1.13·38-s − 0.158·40-s + 0.468·41-s − 0.914·43-s + 0.753·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.98427733550037, −13.41779537073624, −13.06312464423401, −12.28030336658390, −11.88984881381806, −11.44342089964803, −11.15263121240636, −10.21197910412581, −9.973535917201445, −9.512631461710415, −9.042314844840368, −8.677045934482426, −7.989086429614969, −7.427872370956346, −6.890735664903618, −6.489556614821667, −5.929807154246745, −5.504553793715513, −4.652417841709517, −4.074152565080272, −3.457054558252705, −2.869878087296144, −2.147014223704964, −1.467096274396189, −0.9732272457622756, 0, 0.9732272457622756, 1.467096274396189, 2.147014223704964, 2.869878087296144, 3.457054558252705, 4.074152565080272, 4.652417841709517, 5.504553793715513, 5.929807154246745, 6.489556614821667, 6.890735664903618, 7.427872370956346, 7.989086429614969, 8.677045934482426, 9.042314844840368, 9.512631461710415, 9.973535917201445, 10.21197910412581, 11.15263121240636, 11.44342089964803, 11.88984881381806, 12.28030336658390, 13.06312464423401, 13.41779537073624, 13.98427733550037

Graph of the $Z$-function along the critical line