Properties

Label 2-103488-1.1-c1-0-12
Degree $2$
Conductor $103488$
Sign $1$
Analytic cond. $826.355$
Root an. cond. $28.7464$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 9-s − 11-s − 13-s + 3·15-s − 8·17-s + 7·19-s − 2·23-s + 4·25-s − 27-s + 29-s − 4·31-s + 33-s + 3·37-s + 39-s − 6·41-s − 4·43-s − 3·45-s + 47-s + 8·51-s − 6·53-s + 3·55-s − 7·57-s + 3·59-s + 14·61-s + 3·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 1/3·9-s − 0.301·11-s − 0.277·13-s + 0.774·15-s − 1.94·17-s + 1.60·19-s − 0.417·23-s + 4/5·25-s − 0.192·27-s + 0.185·29-s − 0.718·31-s + 0.174·33-s + 0.493·37-s + 0.160·39-s − 0.937·41-s − 0.609·43-s − 0.447·45-s + 0.145·47-s + 1.12·51-s − 0.824·53-s + 0.404·55-s − 0.927·57-s + 0.390·59-s + 1.79·61-s + 0.372·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103488\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(826.355\)
Root analytic conductor: \(28.7464\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 103488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4862589783\)
\(L(\frac12)\) \(\approx\) \(0.4862589783\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55346582779317, −13.21772878240658, −12.68302281377879, −12.10686486287107, −11.70660705048348, −11.33560074943007, −10.99348568978684, −10.42001323479906, −9.723140675879291, −9.388424809755192, −8.613608860041101, −8.217994437776281, −7.661115515220002, −7.208786522126644, −6.702739021888581, −6.281056480427047, −5.252893089092614, −5.143844210082779, −4.432856896075755, −3.848388840394952, −3.467826095170013, −2.606802598838960, −1.993673825430416, −1.029238887467164, −0.2618694448550980, 0.2618694448550980, 1.029238887467164, 1.993673825430416, 2.606802598838960, 3.467826095170013, 3.848388840394952, 4.432856896075755, 5.143844210082779, 5.252893089092614, 6.281056480427047, 6.702739021888581, 7.208786522126644, 7.661115515220002, 8.217994437776281, 8.613608860041101, 9.388424809755192, 9.723140675879291, 10.42001323479906, 10.99348568978684, 11.33560074943007, 11.70660705048348, 12.10686486287107, 12.68302281377879, 13.21772878240658, 13.55346582779317

Graph of the $Z$-function along the critical line