Properties

Label 2-102960-1.1-c1-0-111
Degree $2$
Conductor $102960$
Sign $-1$
Analytic cond. $822.139$
Root an. cond. $28.6729$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 11-s − 13-s + 2·19-s − 4·23-s + 25-s + 4·29-s − 6·31-s + 2·35-s − 6·37-s + 6·41-s − 3·49-s − 8·53-s + 55-s + 4·59-s + 2·61-s − 65-s − 10·67-s + 8·71-s − 2·73-s + 2·77-s + 4·79-s − 12·83-s + 2·89-s − 2·91-s + 2·95-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 0.301·11-s − 0.277·13-s + 0.458·19-s − 0.834·23-s + 1/5·25-s + 0.742·29-s − 1.07·31-s + 0.338·35-s − 0.986·37-s + 0.937·41-s − 3/7·49-s − 1.09·53-s + 0.134·55-s + 0.520·59-s + 0.256·61-s − 0.124·65-s − 1.22·67-s + 0.949·71-s − 0.234·73-s + 0.227·77-s + 0.450·79-s − 1.31·83-s + 0.211·89-s − 0.209·91-s + 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(102960\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(822.139\)
Root analytic conductor: \(28.6729\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 102960,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99869615138917, −13.65292709822937, −12.86822967996579, −12.60449806609776, −11.90915264881318, −11.63097520309707, −10.97054059256119, −10.61964436629460, −9.952918282615084, −9.616452576303400, −8.982954077743929, −8.564891180362246, −7.947944945794691, −7.508127027485613, −6.967742323545968, −6.332616200356958, −5.845220043818607, −5.247845971811481, −4.801593373963955, −4.203663653456582, −3.557403600393628, −2.922445579517279, −2.149442644803591, −1.686305007018666, −0.9997461778864144, 0, 0.9997461778864144, 1.686305007018666, 2.149442644803591, 2.922445579517279, 3.557403600393628, 4.203663653456582, 4.801593373963955, 5.247845971811481, 5.845220043818607, 6.332616200356958, 6.967742323545968, 7.508127027485613, 7.947944945794691, 8.564891180362246, 8.982954077743929, 9.616452576303400, 9.952918282615084, 10.61964436629460, 10.97054059256119, 11.63097520309707, 11.90915264881318, 12.60449806609776, 12.86822967996579, 13.65292709822937, 13.99869615138917

Graph of the $Z$-function along the critical line