Properties

Label 8160.a.340.a1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 5 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(340\)\(\medspace = 2^{2} \cdot 5 \cdot 17 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,17)(2,3)(5,9)(7,8)(10,15)(11,12), (1,3)(2,17)(4,14)(5,9)(6,13)(7,8)(10,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SOMinus(4,4)$
Order: \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \)
Exponent: \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times A_4$
Normal closure:$\SOMinus(4,4)$
Core:$C_1$
Minimal over-subgroups:$C_2\times A_5$$C_2^3:A_4$
Maximal under-subgroups:$A_4$$C_2^3$$C_6$

Other information

Number of subgroups in this conjugacy class$340$
Möbius function$1$
Projective image$\SOMinus(4,4)$