Properties

Label 8160.a.680.b1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{3} \cdot 5 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(680\)\(\medspace = 2^{3} \cdot 5 \cdot 17 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,14)(2,6)(3,4)(5,15)(7,10)(8,11)(9,12)(13,17), (1,12)(2,11)(3,15)(4,5)(6,8)(7,13)(9,14)(10,17), (1,4,11)(2,14,15)(3,6,12)(5,8,9)(10,17,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SOMinus(4,4)$
Order: \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \)
Exponent: \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times A_4$
Normal closure:$\SL(2,16)$
Core:$C_1$
Minimal over-subgroups:$A_5$$C_2^2:A_4$$C_2\times A_4$
Maximal under-subgroups:$C_2^2$$C_3$

Other information

Number of subgroups in this conjugacy class$340$
Möbius function$-1$
Projective image$\SOMinus(4,4)$