Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(4080\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
Exponent: | \(2\) |
Generators: |
$\langle(1,17)(2,3)(5,9)(7,8)(10,15)(11,12)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $\SOMinus(4,4)$ |
Order: | \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \) |
Exponent: | \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \) |
Derived length: | $1$ |
The ambient group is nonabelian, almost simple, and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \) |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2\times A_5$ | ||||
Normalizer: | $C_2\times A_5$ | ||||
Normal closure: | $\SOMinus(4,4)$ | ||||
Core: | $C_1$ | ||||
Minimal over-subgroups: | $C_{10}$ | $D_5$ | $C_6$ | $S_3$ | $C_2^2$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of subgroups in this conjugacy class | $68$ |
Möbius function | $0$ |
Projective image | $\SOMinus(4,4)$ |