Properties

Label 8160.a
Order \( 2^{5} \cdot 3 \cdot 5 \cdot 17 \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{6} \cdot 3 \cdot 5 \cdot 17 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $17$
Trans deg. $17$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SOMinus(4, 4);
 
Copy content comment:Define the group as a permutation group
 
Copy content gap:G := Group( (2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17), (1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15), (1,6,13,5,4,2,15,10,14,12,3,9,7,11,8), (1,7)(2,13)(3,10)(4,11)(5,12)(8,14) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17)', '(1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)', '(1,6,13,5,4,2,15,10,14,12,3,9,7,11,8)', '(1,7)(2,13)(3,10)(4,11)(5,12)(8,14)'])
 

Group information

Description:$\SOMinus(4,4)$
Order: \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $\SL(2,16)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, almost simple, and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 10 15 17
Elements 1 323 272 1020 544 1360 1632 1088 1920 8160
Conjugacy classes   1 2 1 1 2 1 2 2 4 16
Divisions 1 2 1 1 1 1 1 1 1 10
Autjugacy classes 1 2 1 1 1 1 1 1 2 11

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 16 17 30 34 68 120
Irr. complex chars.   2 2 6 4 2 0 0 16
Irr. rational chars. 2 2 2 0 2 1 1 10

Minimal presentations

Permutation degree:$17$
Transitive degree:$17$
Rank: $2$
Inequivalent generating pairs: $2817$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 16 16 16
Arbitrary 16 16 16

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\SOMinus(4,4)$, $\GOMinus(4,4)$, $\PSOMinus(4,4)$, $\PGOMinus(4,4)$, $\CSOMinus(4,4)$
Permutation group:Degree $17$ $\langle(2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17), (1,16)(2,3)(4,5)(6,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 17 | (2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17), (1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15), (1,6,13,5,4,2,15,10,14,12,3,9,7,11,8), (1,7)(2,13)(3,10)(4,11)(5,12)(8,14) >;
 
Copy content gap:G := Group( (2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17), (1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15), (1,6,13,5,4,2,15,10,14,12,3,9,7,11,8), (1,7)(2,13)(3,10)(4,11)(5,12)(8,14) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17)', '(1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)', '(1,6,13,5,4,2,15,10,14,12,3,9,7,11,8)', '(1,7)(2,13)(3,10)(4,11)(5,12)(8,14)'])
 
Transitive group: 17T7 34T28 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $\SL(2,16)$ $\,\rtimes\,$ $C_2$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as permutations of degree 17.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 10002 subgroups in 47 conjugacy classes, 3 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $\SOMinus(4,4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $\SL(2,16)$ $G/G' \simeq$ $C_2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $\SOMinus(4,4)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_1$ $G/\operatorname{Fit} \simeq$ $\SOMinus(4,4)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_1$ $G/R \simeq$ $\SOMinus(4,4)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $\SL(2,16)$ $G/\operatorname{soc} \simeq$ $C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $\SOMinus(4,4)$ $\rhd$ $\SL(2,16)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $\SOMinus(4,4)$ $\rhd$ $\SL(2,16)$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $\SOMinus(4,4)$ $\rhd$ $\SL(2,16)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

1A 2A 2B 3A 4A 5A1 5A2 6A 10A1 10A3 15A1 15A2 17A1 17A2 17A3 17A6
Size 1 68 255 272 1020 272 272 1360 816 816 544 544 480 480 480 480
2 P 1A 1A 1A 3A 2B 5A2 5A1 3A 5A1 5A2 15A2 15A1 17A2 17A1 17A6 17A3
3 P 1A 2A 2B 1A 4A 5A2 5A1 2A 10A3 10A1 5A1 5A2 17A3 17A6 17A2 17A1
5 P 1A 2A 2B 3A 4A 1A 1A 6A 2A 2A 3A 3A 17A3 17A6 17A2 17A1
17 P 1A 2A 2B 3A 4A 5A2 5A1 6A 10A3 10A1 15A2 15A1 1A 1A 1A 1A
Type
8160.a.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8160.a.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8160.a.16a R 16 4 0 1 0 1 1 1 1 1 1 1 1 1 1 1
8160.a.16b R 16 4 0 1 0 1 1 1 1 1 1 1 1 1 1 1
8160.a.17a R 17 5 1 1 1 2 2 1 0 0 1 1 0 0 0 0
8160.a.17b R 17 5 1 1 1 2 2 1 0 0 1 1 0 0 0 0
8160.a.17c1 R 17 3 1 2 1 ζ52+ζ52 ζ51+ζ5 0 ζ51ζ5 ζ52ζ52 ζ51+ζ5 ζ52+ζ52 0 0 0 0
8160.a.17c2 R 17 3 1 2 1 ζ51+ζ5 ζ52+ζ52 0 ζ52ζ52 ζ51ζ5 ζ52+ζ52 ζ51+ζ5 0 0 0 0
8160.a.17d1 R 17 3 1 2 1 ζ52+ζ52 ζ51+ζ5 0 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 0 0 0 0
8160.a.17d2 R 17 3 1 2 1 ζ51+ζ5 ζ52+ζ52 0 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 0 0 0 0
8160.a.30a1 R 30 0 2 0 0 0 0 0 0 0 0 0 ζ174ζ171ζ17ζ174 ζ178ζ172ζ172ζ178 ζ175ζ173ζ173ζ175 ζ177ζ176ζ176ζ177
8160.a.30a2 R 30 0 2 0 0 0 0 0 0 0 0 0 ζ175ζ173ζ173ζ175 ζ177ζ176ζ176ζ177 ζ178ζ172ζ172ζ178 ζ174ζ171ζ17ζ174
8160.a.30a3 R 30 0 2 0 0 0 0 0 0 0 0 0 ζ178ζ172ζ172ζ178 ζ174ζ171ζ17ζ174 ζ177ζ176ζ176ζ177 ζ175ζ173ζ173ζ175
8160.a.30a4 R 30 0 2 0 0 0 0 0 0 0 0 0 ζ177ζ176ζ176ζ177 ζ175ζ173ζ173ζ175 ζ174ζ171ζ17ζ174 ζ178ζ172ζ172ζ178
8160.a.34a1 R 34 0 2 2 0 2ζ52+2ζ52 2ζ51+2ζ5 0 0 0 ζ51ζ5 ζ52ζ52 0 0 0 0
8160.a.34a2 R 34 0 2 2 0 2ζ51+2ζ5 2ζ52+2ζ52 0 0 0 ζ52ζ52 ζ51ζ5 0 0 0 0

Rational character table

1A 2A 2B 3A 4A 5A 6A 10A 15A 17A
Size 1 68 255 272 1020 544 1360 1632 1088 1920
2 P 1A 1A 1A 3A 2B 5A 3A 5A 15A 17A
3 P 1A 2A 2B 1A 4A 5A 2A 10A 5A 17A
5 P 1A 2A 2B 3A 4A 1A 6A 2A 3A 17A
17 P 1A 2A 2B 3A 4A 5A 6A 10A 15A 1A
8160.a.1a 1 1 1 1 1 1 1 1 1 1
8160.a.1b 1 1 1 1 1 1 1 1 1 1
8160.a.16a 16 4 0 1 0 1 1 1 1 1
8160.a.16b 16 4 0 1 0 1 1 1 1 1
8160.a.17a 17 5 1 1 1 2 1 0 1 0
8160.a.17b 17 5 1 1 1 2 1 0 1 0
8160.a.17c 34 6 2 4 2 1 0 1 1 0
8160.a.17d 34 6 2 4 2 1 0 1 1 0
8160.a.30a 120 0 8 0 0 0 0 0 0 1
8160.a.34a 68 0 4 4 0 2 0 0 1 0