Group action invariants
| Degree $n$ : | $34$ | |
| Transitive number $t$ : | $28$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5,29,2,6,30)(3,23,33,15,20,9)(4,24,34,16,19,10)(7,21,25,13,32,17)(8,22,26,14,31,18)(11,12)(27,28), (1,25,18,32,7,16,29,14,10,6,3,33,22,20,24,28,12)(2,26,17,31,8,15,30,13,9,5,4,34,21,19,23,27,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 17: $\PSL(2,16):C_2$
Low degree siblings
17T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $68$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 7,15)( 8,16)( 9,10)(11,18)(12,17)(13,14)(19,25)(20,26) (21,28)(22,27)(23,24)(29,30)(31,33)(32,34)$ |
| $ 5, 5, 5, 5, 5, 5, 1, 1, 1, 1 $ | $272$ | $5$ | $( 1,29,14,10,24)( 2,30,13, 9,23)( 3,18,25,28,16)( 4,17,26,27,15) ( 5,11,19,21, 8)( 6,12,20,22, 7)$ |
| $ 5, 5, 5, 5, 5, 5, 1, 1, 1, 1 $ | $272$ | $5$ | $( 1,10,29,24,14)( 2, 9,30,23,13)( 3,28,18,16,25)( 4,27,17,15,26) ( 5,21,11, 8,19)( 6,22,12, 7,20)$ |
| $ 10, 10, 10, 2, 2 $ | $816$ | $10$ | $( 1, 9,29,23,14, 2,10,30,24,13)( 3,21,18, 8,25, 5,28,11,16,19)( 4,22,17, 7,26, 6,27,12,15,20)(31,33)(32,34)$ |
| $ 10, 10, 10, 2, 2 $ | $816$ | $10$ | $( 1,30,14, 9,24, 2,29,13,10,23)( 3,11,25,21,16, 5,18,19,28, 8)( 4,12,26,22,15, 6,17,20,27, 7)(31,33)(32,34)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $272$ | $3$ | $( 1, 6, 3)( 2, 5, 4)( 7,16,24)( 8,15,23)( 9,21,27)(10,22,28)(11,17,30) (12,18,29)(13,19,26)(14,20,25)$ |
| $ 15, 15, 1, 1, 1, 1 $ | $544$ | $15$ | $( 1,16,22,14,18, 6,24,28,20,29, 3, 7,10,25,12)( 2,15,21,13,17, 5,23,27,19,30, 4, 8, 9,26,11)$ |
| $ 15, 15, 1, 1, 1, 1 $ | $544$ | $15$ | $( 1,28,12,24,25, 6,10,18, 7,14, 3,22,29,16,20)( 2,27,11,23,26, 5, 9,17, 8,13, 4,21,30,15,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $255$ | $2$ | $( 1,10)( 2, 9)( 3,16)( 4,15)( 5, 8)( 6, 7)(11,17)(12,18)(19,34)(20,33)(21,27) (22,28)(23,30)(24,29)(25,32)(26,31)$ |
| $ 17, 17 $ | $480$ | $17$ | $( 1,16,33,10,24,18,28, 3,20,22,32,25,12,14,29, 6, 7)( 2,15,34, 9,23,17,27, 4, 19,21,31,26,11,13,30, 5, 8)$ |
| $ 17, 17 $ | $480$ | $17$ | $( 1,33,24,28,20,32,12,29, 7,16,10,18, 3,22,25,14, 6)( 2,34,23,27,19,31,11,30, 8,15, 9,17, 4,21,26,13, 5)$ |
| $ 17, 17 $ | $480$ | $17$ | $( 1,28,12,16, 3,14,33,20,29,10,22, 6,24,32, 7,18,25)( 2,27,11,15, 4,13,34,19, 30, 9,21, 5,23,31, 8,17,26)$ |
| $ 17, 17 $ | $480$ | $17$ | $( 1,12, 3,33,29,22,24, 7,25,28,16,14,20,10, 6,32,18)( 2,11, 4,34,30,21,23, 8, 26,27,15,13,19, 9, 5,31,17)$ |
| $ 6, 6, 6, 6, 6, 2, 2 $ | $1360$ | $6$ | $( 1,30,18,11, 6,15)( 2,29,17,12, 5,16)( 3,34,10,26,22,31)( 4,33, 9,25,21,32) ( 7,27,24, 8,28,23)(13,14)(19,20)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2 $ | $1020$ | $4$ | $( 1, 8,32, 4)( 2, 7,31, 3)( 5,28,21,20)( 6,27,22,19)( 9,14,17,33)(10,13,18,34) (11,16,23,25)(12,15,24,26)(29,30)$ |
Group invariants
| Order: | $8160=2^{5} \cdot 3 \cdot 5 \cdot 17$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 5 3 1 1 1 1 . . 5 3 . . . . 1 1
3 1 1 1 1 1 1 1 1 . . . . . . . .
5 1 1 1 . 1 1 1 1 . . . . . . 1 1
17 1 . . . . . . . . . 1 1 1 1 . .
1a 2a 3a 6a 5a 5b 15a 15b 2b 4a 17a 17b 17c 17d 10a 10b
2P 1a 1a 3a 3a 5b 5a 15b 15a 1a 2b 17b 17a 17d 17c 5a 5b
3P 1a 2a 1a 2a 5b 5a 5a 5b 2b 4a 17d 17c 17a 17b 10b 10a
5P 1a 2a 3a 6a 1a 1a 3a 3a 2b 4a 17d 17c 17a 17b 2a 2a
7P 1a 2a 3a 6a 5b 5a 15b 15a 2b 4a 17c 17d 17b 17a 10b 10a
11P 1a 2a 3a 6a 5a 5b 15a 15b 2b 4a 17c 17d 17b 17a 10a 10b
13P 1a 2a 3a 6a 5b 5a 15b 15a 2b 4a 17a 17b 17c 17d 10b 10a
17P 1a 2a 3a 6a 5b 5a 15b 15a 2b 4a 1a 1a 1a 1a 10b 10a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 1 1 1 -1 1 1 1 1 -1 -1
X.3 16 -4 1 -1 1 1 1 1 . . -1 -1 -1 -1 1 1
X.4 16 4 1 1 1 1 1 1 . . -1 -1 -1 -1 -1 -1
X.5 17 5 -1 -1 2 2 -1 -1 1 1 . . . . . .
X.6 17 -5 -1 1 2 2 -1 -1 1 -1 . . . . . .
X.7 17 -3 2 . A *A *A A 1 1 . . . . *A A
X.8 17 -3 2 . *A A A *A 1 1 . . . . A *A
X.9 17 3 2 . A *A *A A 1 -1 . . . . -*A -A
X.10 17 3 2 . *A A A *A 1 -1 . . . . -A -*A
X.11 30 . . . . . . . -2 . C D F E . .
X.12 30 . . . . . . . -2 . D C E F . .
X.13 30 . . . . . . . -2 . E F C D . .
X.14 30 . . . . . . . -2 . F E D C . .
X.15 34 . -2 . B *B -*A -A 2 . . . . . . .
X.16 34 . -2 . *B B -A -*A 2 . . . . . . .
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
B = 2*E(5)^2+2*E(5)^3
= -1-Sqrt(5) = -1-r5
C = -E(17)^6-E(17)^7-E(17)^10-E(17)^11
D = -E(17)^3-E(17)^5-E(17)^12-E(17)^14
E = -E(17)-E(17)^4-E(17)^13-E(17)^16
F = -E(17)^2-E(17)^8-E(17)^9-E(17)^15
|