Subgroup ($H$) information
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(1360\)\(\medspace = 2^{4} \cdot 5 \cdot 17 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(1,17)(2,3)(5,9)(7,8)(10,15)(11,12), (1,7,11)(2,9,10)(3,5,15)(6,14,13)(8,12,17)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $\SOMinus(4,4)$ |
Order: | \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \) |
Exponent: | \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \) |
Derived length: | $1$ |
The ambient group is nonabelian, almost simple, and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_6$ | ||
Normalizer: | $D_6$ | ||
Normal closure: | $\SOMinus(4,4)$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $C_3\times D_5$ | $C_2\times A_4$ | $D_6$ |
Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
Number of subgroups in this conjugacy class | $680$ |
Möbius function | $-2$ |
Projective image | $\SOMinus(4,4)$ |