Properties

Label 8160.a.1360.a1.a1
Order $ 2 \cdot 3 $
Index $ 2^{4} \cdot 5 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(1360\)\(\medspace = 2^{4} \cdot 5 \cdot 17 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,17)(2,3)(5,9)(7,8)(10,15)(11,12), (1,7,11)(2,9,10)(3,5,15)(6,14,13)(8,12,17)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\SOMinus(4,4)$
Order: \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \)
Exponent: \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_6$
Normal closure:$\SOMinus(4,4)$
Core:$C_1$
Minimal over-subgroups:$C_3\times D_5$$C_2\times A_4$$D_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this conjugacy class$680$
Möbius function$-2$
Projective image$\SOMinus(4,4)$