Subgroup ($H$) information
Description: | $C_1$ |
Order: | $1$ |
Index: | \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \) |
Exponent: | $1$ |
Generators: | |
Nilpotency class: | $0$ |
Derived length: | $0$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, the Fitting subgroup, the radical, a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational.
Ambient group ($G$) information
Description: | $\SOMinus(4,4)$ |
Order: | \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \) |
Exponent: | \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \) |
Derived length: | $1$ |
The ambient group is nonabelian, almost simple, and nonsolvable.
Quotient group ($Q$) structure
Description: | $\SOMinus(4,4)$ |
Order: | \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \) |
Exponent: | \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \) |
Automorphism Group: | $\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $1$ |
The quotient is nonabelian, almost simple, and nonsolvable.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \) |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $\SOMinus(4,4)$ | ||||
Normalizer: | $\SOMinus(4,4)$ | ||||
Complements: | $\SOMinus(4,4)$ | ||||
Minimal over-subgroups: | $C_{17}$ | $C_5$ | $C_3$ | $C_2$ | $C_2$ |
Other information
Möbius function | $0$ |
Projective image | $\SOMinus(4,4)$ |