Properties

Label 8160.a.4080.b1.a1
Order $ 2 $
Index $ 2^{4} \cdot 3 \cdot 5 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(4080\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Exponent: \(2\)
Generators: $\langle(1,14)(2,6)(3,4)(5,15)(7,10)(8,11)(9,12)(13,17)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $\SOMinus(4,4)$
Order: \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \)
Exponent: \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\wr C_2$
Normalizer:$C_2^2\wr C_2$
Normal closure:$\SL(2,16)$
Core:$C_1$
Minimal over-subgroups:$D_{17}$$D_5$$S_3$$C_2^2$$C_4$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$255$
Möbius function$0$
Projective image$\SOMinus(4,4)$