Elements of the group are displayed as permutations of degree 10.
Group |
Label |
Order |
Size |
Centralizer |
Powers |
Representative |
2P |
3P |
$S_4\times S_3^2$ |
1A |
$1$ |
$1$ |
$S_4\times S_3^2$ |
1A |
1A |
$()$ |
$S_4\times S_3^2$ |
2A |
$2$ |
$3$ |
$D_6\times S_4$ |
1A |
2A |
$(1,5)(2,4)(3,6)$ |
$S_4\times S_3^2$ |
2B |
$2$ |
$3$ |
$D_6\times S_4$ |
1A |
2B |
$(1,6)(2,4)(3,5)$ |
$S_4\times S_3^2$ |
2C |
$2$ |
$3$ |
$D_4\times S_3^2$ |
1A |
2C |
$(7,9)(8,10)$ |
$S_4\times S_3^2$ |
2D |
$2$ |
$6$ |
$D_6^2$ |
1A |
2D |
$(9,10)$ |
$S_4\times S_3^2$ |
2E |
$2$ |
$9$ |
$D_4\times D_6$ |
1A |
2E |
$(1,5)(2,4)(3,6)(7,8)(9,10)$ |
$S_4\times S_3^2$ |
2F |
$2$ |
$9$ |
$D_4\times D_6$ |
1A |
2F |
$(1,6)(2,4)(3,5)(7,8)(9,10)$ |
$S_4\times S_3^2$ |
2G |
$2$ |
$9$ |
$C_2^2\times S_4$ |
1A |
2G |
$(3,4)(5,6)$ |
$S_4\times S_3^2$ |
2H |
$2$ |
$18$ |
$C_2^2\times D_6$ |
1A |
2H |
$(1,6)(2,4)(3,5)(7,9)$ |
$S_4\times S_3^2$ |
2I |
$2$ |
$18$ |
$C_2^2\times D_6$ |
1A |
2I |
$(1,5)(2,4)(3,6)(7,10)$ |
$S_4\times S_3^2$ |
2J |
$2$ |
$27$ |
$C_2^2\times D_4$ |
1A |
2J |
$(3,4)(5,6)(7,8)(9,10)$ |
$S_4\times S_3^2$ |
2K |
$2$ |
$54$ |
$C_2^4$ |
1A |
2K |
$(2,5)(3,4)(7,9)$ |
$S_4\times S_3^2$ |
3A |
$3$ |
$2$ |
$C_6^2:D_6$ |
3A |
1A |
$(1,3,4)(2,5,6)$ |
$S_4\times S_3^2$ |
3B |
$3$ |
$2$ |
$C_6^2:D_6$ |
3B |
1A |
$(1,3,4)(2,6,5)$ |
$S_4\times S_3^2$ |
3C |
$3$ |
$4$ |
$C_3^2\times S_4$ |
3C |
1A |
$(2,6,5)$ |
$S_4\times S_3^2$ |
3D |
$3$ |
$8$ |
$C_3\times S_3^2$ |
3D |
1A |
$(8,10,9)$ |
$S_4\times S_3^2$ |
3E |
$3$ |
$16$ |
$S_3\times C_3^2$ |
3E |
1A |
$(1,3,4)(2,5,6)(7,10,9)$ |
$S_4\times S_3^2$ |
3F |
$3$ |
$16$ |
$S_3\times C_3^2$ |
3F |
1A |
$(1,4,3)(2,5,6)(7,10,9)$ |
$S_4\times S_3^2$ |
3G |
$3$ |
$32$ |
$C_3^3$ |
3G |
1A |
$(1,3,4)(7,9,10)$ |
$S_4\times S_3^2$ |
4A |
$4$ |
$6$ |
$C_4\times S_3^2$ |
2C |
4A |
$(7,10,9,8)$ |
$S_4\times S_3^2$ |
4B |
$4$ |
$18$ |
$C_4\times D_6$ |
2C |
4B |
$(1,6)(2,4)(3,5)(7,10,9,8)$ |
$S_4\times S_3^2$ |
4C |
$4$ |
$18$ |
$C_4\times D_6$ |
2C |
4C |
$(1,5)(2,4)(3,6)(7,9,8,10)$ |
$S_4\times S_3^2$ |
4D |
$4$ |
$54$ |
$C_2^2\times C_4$ |
2C |
4D |
$(2,5)(3,4)(7,8,10,9)$ |
$S_4\times S_3^2$ |
6A |
$6$ |
$6$ |
$C_6\times S_4$ |
3A |
2A |
$(1,2,3,5,4,6)$ |
$S_4\times S_3^2$ |
6B |
$6$ |
$6$ |
$C_6\times S_4$ |
3B |
2B |
$(1,2,3,6,4,5)$ |
$S_4\times S_3^2$ |
6C |
$6$ |
$6$ |
$C_{12}:D_6$ |
3A |
2C |
$(1,4,3)(2,6,5)(7,9)(8,10)$ |
$S_4\times S_3^2$ |
6D |
$6$ |
$6$ |
$C_{12}:D_6$ |
3B |
2C |
$(1,4,3)(2,5,6)(7,9)(8,10)$ |
$S_4\times S_3^2$ |
6E |
$6$ |
$12$ |
$C_6\times D_6$ |
3A |
2D |
$(1,3,4)(2,5,6)(9,10)$ |
$S_4\times S_3^2$ |
6F |
$6$ |
$12$ |
$C_6\times D_6$ |
3B |
2D |
$(1,3,4)(2,6,5)(9,10)$ |
$S_4\times S_3^2$ |
6G |
$6$ |
$12$ |
$D_4\times C_3^2$ |
3C |
2C |
$(2,6,5)(7,9)(8,10)$ |
$S_4\times S_3^2$ |
6H |
$6$ |
$18$ |
$C_6\times D_4$ |
3A |
2E |
$(1,2,3,5,4,6)(7,8)(9,10)$ |
$S_4\times S_3^2$ |
6I |
$6$ |
$18$ |
$C_6\times D_4$ |
3B |
2F |
$(1,2,3,6,4,5)(7,8)(9,10)$ |
$S_4\times S_3^2$ |
6J |
$6$ |
$24$ |
$C_6^2$ |
3C |
2D |
$(2,5,6)(9,10)$ |
$S_4\times S_3^2$ |
6K |
$6$ |
$24$ |
$C_6\times S_3$ |
3D |
2A |
$(1,2)(3,5)(4,6)(8,9,10)$ |
$S_4\times S_3^2$ |
6L |
$6$ |
$24$ |
$C_6\times S_3$ |
3D |
2B |
$(1,2)(3,6)(4,5)(8,9,10)$ |
$S_4\times S_3^2$ |
6M |
$6$ |
$36$ |
$C_2^2\times C_6$ |
3B |
2H |
$(1,2,3,6,4,5)(7,9)$ |
$S_4\times S_3^2$ |
6N |
$6$ |
$36$ |
$C_2^2\times C_6$ |
3A |
2I |
$(1,6,4,5,3,2)(7,10)$ |
$S_4\times S_3^2$ |
6O |
$6$ |
$48$ |
$C_3\times C_6$ |
3E |
2A |
$(1,5,3,6,4,2)(7,9,10)$ |
$S_4\times S_3^2$ |
6P |
$6$ |
$48$ |
$C_3\times C_6$ |
3F |
2B |
$(1,6,4,2,3,5)(7,9,10)$ |
$S_4\times S_3^2$ |
6Q |
$6$ |
$72$ |
$C_2\times C_6$ |
3D |
2G |
$(3,4)(5,6)(8,10,9)$ |
$S_4\times S_3^2$ |
12A |
$12$ |
$12$ |
$S_3\times C_{12}$ |
6C |
4A |
$(1,3,4)(2,5,6)(7,8,9,10)$ |
$S_4\times S_3^2$ |
12B |
$12$ |
$12$ |
$S_3\times C_{12}$ |
6D |
4A |
$(1,3,4)(2,6,5)(7,8,9,10)$ |
$S_4\times S_3^2$ |
12C |
$12$ |
$24$ |
$C_3\times C_{12}$ |
6G |
4A |
$(2,5,6)(7,8,9,10)$ |
$S_4\times S_3^2$ |
12D |
$12$ |
$36$ |
$C_2\times C_{12}$ |
6D |
4B |
$(1,5,4,6,3,2)(7,8,9,10)$ |
$S_4\times S_3^2$ |
12E |
$12$ |
$36$ |
$C_2\times C_{12}$ |
6C |
4C |
$(1,2,3,5,4,6)(7,10,8,9)$ |